Среди всех этих бурных событий незаметным прошло рождение самого знаменитого жителя этого города – Пьера Ферма, сына богатого торговца кожей Доминика и его жены Клэр (урожденной де Лонг), происходившей из семьи адвокатов. Есть некоторые сомнения относительно года его рождения (это может быть 1601 или 1607 г.), поскольку у него, возможно, был старший брат, тоже Пьер, который умер молодым. Его отец, помимо всего прочего, был вторым консулом Бомон-де-Ломани – можно сказать, что Ферма родился в весьма политизированной семье. Положение отца практически гарантирует, что Ферма вырос в родном городе, а если это так, то образование он должен был получить в местном францисканском монастыре. Поучившись некоторое время в Университете Тулузы, он отправился в Бордо, где и расцвели его математические способности. Для начала Ферма предложил не слишком уверенную реставрацию трактата On Plane Loci – утраченной работы греческого геометра Аполлония; затем, предвосхищая кое-какие ранние достижения в анализе, написал о поиске максимумов и минимумов. Его юридическая карьера с дипломом Университета Орлеана также была достаточно успешной. В 1631 г. он приобрел для себя пост советника при парламенте Тулузы, позволивший ему прибавить частицу «де» к фамилии. Ферма занимал эту должность в качестве юриста всю оставшуюся жизнь; жил при этом в Тулузе, но работал время от времени в Бомон-де-Ломани и Кастре. Первоначально он был прикреплен к нижней палате парламента, но в 1638 г. был переведен в верхнюю палату, а затем, в 1652 г., поднялся на самую вершину уголовного суда. Отчасти благодаря чуме, унесшей в 1650-е гг. многих старших чиновников, Пьер продолжал подъем по служебной лестнице. В 1653 г. промелькнуло сообщение о том, что Ферма умер от чумы, но (как и в случае Марка Твена) слухи эти оказались несколько преувеличенными. Судя по всему, Ферма, как говорится, откусывал больше, чем мог проглотить; интерес к математике сильно отвлекал его от юридических обязанностей. В одном из документов написано: «Он сильно занят, он не докладывает суду дела как следует и все время путается».
Его «Введение в изучение плоских и пространственных мест» 1629 г. стало новаторским; в нем впервые использовались координаты, позволившие связать геометрию и алгебру. Обычно эту идею приписывают Декарту и его эссе «Геометрия» 1637 г. (приложение к «Рассуждению о методе»), но на самом деле намеки на нее можно найти в гораздо более ранних произведениях, вплоть до древнегреческих. Смысл идеи заключается в использовании двух координатных осей для представления любой точки на плоскости посредством единственной пары чисел (
В рассуждении «О касательных к кривым» 1679 г. Ферма находил касательные к различным кривым, то есть занимался геометрической версией дифференциального исчисления. Его метод нахождения максимума и минимума был еще одним предвестником математического анализа. В оптике он сформулировал принцип наименьшего времени: световой луч следует по тому пути, который минимизирует общее время движения. Это был один из первых шагов к вариационному исчислению – области анализа, которая занимается поиском кривых или поверхностей, минимизирующих или максимизирующих некоторую величину. К примеру, какая замкнутая поверхность фиксированного объема имеет наименьшую площадь поверхности? Ответ – сфера; именно поэтому мыльные пузыри имеют сферическую форму, ведь энергия поверхностного натяжения пропорциональна площади поверхности, а пузырь принимает форму, соответствующую минимальной энергии.
В аналогичном ключе Ферма полемизировал с Декартом по поводу закона преломления световых лучей. Декарт, раздраженный, вероятно, тем, что лавры за геометрические координаты достались оппоненту, хотя сам он считал координаты своим изобретением, отозвался критикой в адрес работы Ферма о максимумах, минимумах и касательных. Диспут получился настолько жарким, что в него в качестве арбитра оказался втянут инженер и геометр-новатор Жерар Дезарг. Когда он объявил, что прав Ферма, Декарт неохотно признал: «Если бы вы объяснили это таким образом с самого начала, я бы и возражать не стал».
Величайшее наследие Ферма относится к теории чисел. В его письмах можно найти множество вызовов для математиков. Среди них предложение доказать, что сумма двух полных кубов не может быть полным кубом; решить уравнение, получившее неудачное название «уравнение Пелля»,