Читаем Значимые фигуры полностью

Одна из важнейших и красивейших теорем Ферма говорит о числах, которые можно выразить в виде суммы двух полных квадратов. Альберт Жерар впервые сформулировал утверждение по этой теме в работе, опубликованной посмертно в 1634 г. Ферма первым заявил, что нашел доказательство, написав об этом в письме к Мерсенну в 1640 г. Главное – решить эту задачу для простых чисел. Ответ зависит от типа простого числа в следующем смысле. Единственное четное простое число – 2. Нечетные числа представляют собой либо кратные 4 с добавлением единички, либо кратные 4 с добавлением 3 (то есть имеют вид 4k + 1 или 4k + 3). То же, разумеется, относится и к нечетным простым числам. Ферма доказал, что 2 и все простые числа вида 4k + 1 представляют собой суммы двух квадратов; с другой стороны, простые числа вида 4k + 3 не выражаются через сумму двух квадратов.

Если немного поэкспериментировать, об этом несложно догадаться. К примеру, 13 = 4 + 9 = 22 + 3

2, и 13 = 4 × 3 + 1. С другой стороны, 7 = 4 × 1 +3 и ясно, что сумма двух квадратов не может равняться 7. Однако доказать теорему Ферма о двух квадратах очень трудно. Простейшая часть – показать, что простые числа вида 4k + 3 не являются суммой двух квадратов; я покажу вам, как это сделать, в главе 10 при помощи фокуса, который Гаусс придумал для систематизации базового метода теории чисел. Показать, что простые числа вида 4k + 1 выражаются в виде суммы двух квадратов, намного сложнее. Доказательство Ферма до нас не дошло, но известны доказательства, сделанные с использованием доступных ему методов. Первое известное нам доказательство дал Эйлер; он объявил о нем в 1747 г., а опубликовал в двух статьях в 1752 и 1755 гг.

Общий вывод таков: натуральное число представляет собой сумму двух квадратов в том, и только том случае, если все простые множители вида 4k + 3 появляются в нем в четных степенях при разложении числа на простые множители. К примеру, 245 = 5 × 72. Множитель 7 имеет вид 4k

+ 3, но появляется при разложении дважды, то есть входит в число в четной степени; следовательно, 245 представляется в виде суммы двух квадратов. В самом деле, 245 = 142 + 72. Наоборот, 35 = 5 × 7, и множитель 7 появляется здесь лишь однажды, так что 35 не выражается в виде суммы двух квадратов. Этот результат может показаться случайной, ни с чем не связанной диковинкой, но именно от него взяли начало несколько линий исследований, приведшие в конечном итоге к созданию масштабной теории квадратичных форм Гаусса (глава 10). В наше время эту линию рассуждений провели намного дальше. Родственная теорема, доказанная Лагранжем, утверждает, что любое натуральное число представляет собой сумму четырех квадратов (квадрат 0 = 02 разрешен). Это утверждение тоже имеет важные и обширные следствия.

* * *

История Великой теоремы Ферма рассказана многократно и рассказывается по сей день, но я не стану извиняться за то, что расскажу ее еще раз. Это замечательная история. То, что слава Ферма зиждется на теореме, которую он почти наверняка не доказал, можно назвать иронией судьбы. Он заявил, что нашел доказательство, и сегодня мы знаем, что теорема действительно верна, но вердикт истории состоит в том, что методами, доступными ему в то время, доказать ее невозможно. Его утверждение о том, что доказательство найдено, существовало лишь в виде рукописного замечания на полях книги, которая к тому же не уцелела и до нас не дошла; вполне возможно, что оно было сделано преждевременно. В математических исследованиях нередко случается, что, проснувшись поутру, человек уверен, что доказал во сне что-то важное, но к полудню, когда автор находит ошибку, это доказательство испаряется.

Книга, о которой идет речь, – французский перевод «Арифметики» Диофанта, первой значительной работы по теории чисел, если не считать «Начал» Евклида, где изложены многие базовые свойства простых чисел и решены некоторые важные уравнения. В любом случае «Арифметика» – первый специализированный труд на эту тему. Не забывайте, что именно эта книга ввела в математику технический термин «диофантово уравнение» для обозначения полиномиального уравнения, которое следует решать в натуральных или рациональных числах. Диофант составил систематический каталог таких уравнений, и один из центральных образцов его коллекции – уравнение x2 + y2 = z2

для пифагоровых троек, называемых так потому, что треугольник со сторонами x, y и z, по теореме Пифагора, будет прямоугольным. Простейшее решение этого уравнения в ненулевых целых числах – это 32 + 42 = 52, знаменитый треугольник со сторонами 3–4–5. Вообще, решений бесконечное множество: Евклид привел процедуру, позволяющую найти их все; Диофант включил этот метод в свою книгу.

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии
Чикатило. Явление зверя
Чикатило. Явление зверя

В середине 1980-х годов в Новочеркасске и его окрестностях происходит череда жутких убийств. Местная милиция бессильна. Они ищут опасного преступника, рецидивиста, но никто не хочет даже думать, что убийцей может быть самый обычный человек, их сосед. Удивительная способность к мимикрии делала Чикатило неотличимым от миллионов советских граждан. Он жил в обществе и удовлетворял свои изуверские сексуальные фантазии, уничтожая самое дорогое, что есть у этого общества, детей.Эта книга — история двойной жизни самого известного маньяка Советского Союза Андрея Чикатило и расследование его преступлений, которые легли в основу эксклюзивного сериала «Чикатило» в мультимедийном сервисе Okko.

Алексей Андреевич Гравицкий , Сергей Юрьевич Волков

Триллер / Биографии и Мемуары / Истории из жизни / Документальное