В конце Второй мировой войны компания Raytheon Company искала новые сферы применения для своих магнетронов – мощных электронных ламп, используемых в радарах. Магнетрон – это электронный аналог свистка. Так же как свисток излучает звуковые волны, магнетрон излучает волны электромагнитные. Они могут отражаться от летящего самолета, и тогда можно определить расстояние до него и его скорость. Сегодня радары используются для отслеживания движения чего угодно – от судов и автомобилей до бейсбольных мячей, теннисных подач и погодных явлений.
Однако после войны, в 1946 году, Raytheon Company не знала, что делать со всеми магнетронами, которые производила. Но однажды инженер Перси Спенсер заметил, что, пока он работал с магнетроном, шоколадный батончик у него в кармане превратился в липкую массу. Он понял, что микроволны могут эффективно разогревать пищу. Чтобы изучить эту идею, он попробовал направить магнетрон на яйцо, помещенное в чайник, и оно взорвалось прямо в лицо одному из его коллег. Спенсер также продемонстрировал, что таким способом можно изготавливать попкорн. Связь между радаром и микроволновой печью дала название первой модели микроволновой печи – Radarange[301]
. До конца 1960-х годов идея не пользовалась коммерческим успехом. Первые микроволновые печи были слишком большими (почти 6 футов, около 1 метра 80 сантиметров, в высоту) и очень дорогими – эквивалент десятков тысяч долларов в пересчете на нынешние деньги. Но со временем микроволновые печи стали достаточно миниатюрными и дешевыми для того, чтобы их могли себе позволить обычные семьи. Сегодня в промышленно развитых странах они есть как минимум у 90 % семей.История ра дара и микроволновых печей – свидетельство взаимосвязанности наук. Подумайте о том, что сюда вошло: физика, электротехника, материаловедение, химия и старое доброе случайное изобретение. Не последнюю роль сыграл и анализ. Он предоставил язык для описания волн и инструменты для их изучения. Волновое уравнение, которое появилось в связи с колеблющимися струнами в музыке, использовал Максвелл для предсказания существования электромагнитных волн. А оттуда недалеко было до электронных ламп, транзисторов, компьютеров, радаров и микроволновых печей. При этом незаменимыми оказались методы Фурье. И, как мы вскоре увидим, его методы сыграли определенную роль в появлении нового способа применения высокоэнергетических электромагнитных волн. Эти гораздо более энергичные волны были случайно обнаружены в самом конце XIX века. Никто не знал, что они собой представляют, поэтому в честь неизвестной величины их назвали икс-лучами. Иначе – рентгеновским излучением, в честь первооткрывателя.
Компьютерная томография и визуализация мозга
Микроволны хороши для разогревания пищи, но для заглядывания внутрь наших тел лучше приспособлены рентгеновские лучи. Они позволяют проводить неинвазивную диагностику переломов, трещин черепа и искривлений позвоночника. К сожалению, обычное рентгеновское излучение нечувствительно к слабым изменениям плотности тканей. Это ограничивает их полезность при изучении мягких тканей и органов. Более современная форма визуализации, называющаяся КТ-исследованием, или компьютерной томографией[302]
, в сотни раз чувствительнее обычных рентгеновских лучей. Ее точность произвела настоящую революцию в медицине.Слово
Чтобы понять, какова во всем этом роль анализа, сначала нужно понять, какую проблему решает томография и каким образом.
Представьте себе, как излучение проходит через ткани мозга. По мере прохождения лучи обнаруживают серое вещество, белое вещество, возможные опухоли, сгустки крови и так далее. Эти ткани поглощают энергию излучения в большей или меньшей степени – в зависимости от их типа. Цель томографии – составить карту поглощения по всему срезу. На основе этой информации КТ может обнаружить наличие опухолей или сгустков. КТ не видит мозг непосредственно; она видит схему поглощения рентгеновских лучей в мозге.