На мой взгляд, такое представление об анализе слишком однобоко. Ведь анализ – это не только работы Ньютона, Лейбница и их последователей. Его история началась намного раньше и развивается до сих пор. Для меня анализ определяется его кредо: чтобы решить сложную задачу о чем-то непрерывном, разрежьте ее на бесконечно много частей, решите их и, собрав затем ответы воедино, сможете понять смысл исходного целого. Я назвал это кредо принципом бесконечности.
Принцип бесконечности существовал с самого начала: в работах Архимеда с криволинейными формами; во время научной революции; в ньютоновской системе мира; есть он и сейчас – в наших домах, наших автомобилях и наших офисах. Он помог нам разработать GPS, мобильные телефоны, лазеры и микроволновые печи. ФБР использовало его для сжатия миллионов файлов отпечатков пальцев. Аллан Кормак применил для создания теории КТ-сканирования. И ФБР, и Кормак решали сложную задачу, собрав ее из более простых частей: вейвлеты для отпечатков пальцев, синусоиды для компьютерной томографии. С этой точки зрения анализ – это обширная коллекция идей и методов, используемых для изучения чего угодно: любой закономерности, любой кривой, любого движения, любого природного процесса, системы или явления, которые меняются плавно и непрерывно, а потому могут стать основой для принципа бесконечности. Это широкое определение выходит далеко за рамки анализа Ньютона и Лейбница и включает его потомков: анализ функций нескольких переменных, обыкновенные дифференциальные уравнения, уравнения в частных производных, анализ Фурье, теорию функций комплексной переменной и многие другие разделы высшей математики, где появляются пределы, производные и интегралы. С этой точки зрения анализ не завершен. Он по-прежнему развивается.
Но здесь я в меньшинстве. Фактически я его и составляю. Никто из моих коллег по математическому факультету не согласится с тем, что все это анализ, и не без оснований: это было бы абсурдно. Иначе половину курсов в учебной программе пришлось бы переименовать. Наряду с Анализом 1, 2 и 3, у нас был бы Анализ с 4 по 38[307]
. Прямо скажем, не очень наглядно. Поэтому мы даем собственные названия каждой ветви анализа и затемняем непрерывную связь между ними. Мы разрезаем анализ на мелкие потребляемые части. Какая ирония, учитывая, что и сам анализ делит непрерывные вещи на части, чтобы облегчить их понимание. Позвольте уточнить: я не возражаю против разных названий курсов. Я всего лишь хочу сказать, что такая нарезка может ввести в заблуждение и заставить нас забыть, что все эти части взаимосвязаны и составляют нечто большее. Цель этой книги – показать анализ как единое целое, помочь ощутить его красоту, единство и величие.Так что же ожидает анализ в будущем? Как говорится, предсказывать всегда трудно, особенно будущее[308]
, но я с уверенностью могу предположить, что в ближайшие годы будут преобладать следующие тенденции:1. Новые приложения анализа к общественным наукам, музыке, искусству и гуманитарным дисциплинам.
2. Продолжение использования анализа в медицине и биологии.
3. Преодоление случайностей, присущих финансам, экономике и погоде.
4. Анализ на службе больших данных и наоборот.
5. Постоянная работа с нелинейностью, хаосом и сложными системами.
6. Развитие партнерства между анализом и компьютерами, включая искусственный интеллект.
7. Расширение границ анализа в квантовой области.
Это очень широкий охват. И, вместо того чтобы говорить понемногу о каждой из упомянутых тем, я сосредоточусь на некоторых из них. После краткого знакомства с дифференциальной геометрией ДНК, где тайна кривых встречается с тайной жизни, мы рассмотрим ряд исследований, которые, я надеюсь, вы сочтете представляющими интерес с философской точки зрения. К ним относятся проблемы прогнозов, связанные с увеличением хаоса, теорией сложности, компьютерами и искусственным интеллектом. Однако для того, чтобы все это обрело смысл, нам нужно рассмотреть основы нелинейной динамики. Изучение такого контекста позволит лучше понять стоящие перед нами задачи.
Анализ традиционно применялся в «точных» науках – физике, астрономии и химии. Но в последние десятилетия проник в биологию и медицину – в такие области, как эпидемиология, популяционная биология, нейробиология и диагностическая визуализация. На протяжении всего нашего рассказа мы сталкивались с примерами математической биологии, начиная от использования анализа для прогнозирования результатов лицевой пластики до моделирования борьбы ВИЧ с иммунной системой. Однако все они были связаны с какими-либо аспектами загадки изменения, самой современной навязчивой идеи анализа. Следующий же пример взят из старой загадки кривых, которая обрела новую жизнь в трехмерной структуре ДНК.