Читаем Бесконечная сила. Как математический анализ раскрывает тайны вселенной полностью

Архимед не одобрил бы вышеприведенный трюк. Он получил тот же результат другим путем, используя рассуждение под названием двойное доказательство от противного. Он доказывал, что площадь сегмента параболы не может быть меньше 4 / 3 или больше 4 / 3, поэтому она должна быть равна 4 / 3. Как позднее советовал Шерлок Холмс, «отбросьте все невозможное, и то, что останется, будет истиной, какой бы невероятной она ни казалась»[59].

Принципиально важно здесь то, что Архимед устранил невозможное с помощью рассуждений, основанных на конечном

количестве осколков. Он показал, что суммарная площадь всех осколков может отличаться от числа 4 / 3 сколь угодно мало – просто надо взять достаточно большое их количество. Поэтому Архимед не прибегал к бесконечности. Все в его доказательстве было железным и вполне соответствует современным стандартам строгости.

Суть его аргументов легко понять, если представить их в виде повседневных терминов. Предположим, что три человека хотят поделить между собой четыре одинаковых ломтика сыра.



Самым здравым решением было бы дать каждому по кусочку, а оставшийся разрезать на три равные части. Это честно: каждый получит по 1 + 1/3 = 4/3 ломтика.

Но предположим, что эти трое оказались математиками, которые слоняются вокруг стола с едой перед семинаром, разглядывая последние четыре ломтика сыра. Самый сообразительный из троих, по совпадению носящий имя Архимед, может предложить такое решение: «Ребята, берем по одному куску, а оставшийся будем делить. Евклид, разрезай его на четыре части, а не на три. Теперь опять берем каждый по четверти, а оставшийся делим. Продолжаем так делать, пока оставшаяся крошка не перестанет нас интересовать. Хорошо? Евдокс, прекрати ныть».



Сколько всего сыра съест каждый из них, если процесс будет продолжаться бесконечно? После первого этапа каждый математик съест один ломтик. После второго, когда поделили четверть, у всех по 1 + 1/4 ломтика. После третьего этапа каждый съест по 1+ 1/4 + 1/16 ломтика. И так далее. Если дележ будет продолжаться вечно, каждому достанется 1+ 1/4 + 1/16 + … ломтиков сыра. А поскольку эта величина равна трети от исходного количества сыра, то 1+ 1/4 + 1/16 + … = 4/3.

В «Квадратуре параболы» Архимед дал очень близкое рассуждение, включая диаграмму с квадратами разного размера, но нигде не прибегал к бесконечности и не пользовался аналогами многоточия, чтобы показать бесконечную сумму. Наоборот, он рассуждал в терминах конечных сумм, так что его изложение было безупречно строгим. Его ключевое соображение заключалось в том, что крохотный квадратик в правом верхнем углу – текущий остаток, который еще предстоит разделить, – можно сделать меньше любого заданного числа после достаточно большого, но конечного числа этапов. И, согласно аналогичным рассуждениям, величину 1+ 1/4 + 1/16 + … + 1/4n (общее количество сыра, которое получает каждый математик) можно сделать сколь угодно близкой к числу 4/3, если взять достаточно большое n. Поэтому единственно возможный ответ – 4/3.

Метод

В этот момент я начинаю испытывать настоящее расположение к Архимеду, поскольку в одном из своих сочинений[60]

он делает то, на что решаются немногие гении: приглашает нас посмотреть, как он мыслит[61]. (Я использую здесь настоящее время, потому что этот труд воспринимается так, словно ученый говорит с нами сегодня). Он делится своей уязвимой интуицией и выражает надежду, что будущие математики станут использовать ее для решения задач, которые ускользнули от него. Сегодня этот секрет известен как метод[62]. Я никогда не слышал о нем на занятиях по анализу. Нас ему не учат. Но я нахожу его историю и саму изначальную идею захватывающей и уникальной.

Архимед пишет о «Методе» в письме своему другу Эратосфену, библиотекарю в Александрии и единственному математику того времени, способному его понять. Он признается, что хотя его метод и не обеспечивает реальной демонстрации результатов[63], которые его интересуют, он помогает установить истину. Это наделяет его интуицией. Как он говорит, «если мы с помощью этого метода заранее получили какие-то знания по нужному вопросу, получить доказательство проще, чем находить его без предварительного знания». Другими словами, разминаясь, играя с методом, Архимед приобретает ощущение территории. И это приводит его к надежным доказательствам.

Вот такой честный отчет о том, что значит заниматься творческой математикой. Математики не придумывают доказательств сразу. Сначала срабатывает интуиция. Строгость приходит позднее. Эту решающую роль интуиции и воображения часто не учитывают в школьных курсах геометрии, однако она важна для всей творческой математики.

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Педагогика / Образование и наука / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература