Читаем Бесконечная сила. Как математический анализ раскрывает тайны вселенной полностью

Архимед с надеждой заключает, что «среди нынешних и будущих поколений найдутся те, кто с помощью описанного здесь метода сможет найти другие теоремы, которые не выпали на нашу долю»[64]. От этих слов у меня на глаза наворачиваются слезы. Этот непревзойденный гений, ощущающий конечность своей жизни на фоне бесконечности математики, признает, что еще предстоит очень много сделать и что существуют «другие теоремы, которые не выпали на нашу долю». Все мы, математики, это понимаем. Наш предмет бесконечен. Он учит смирению даже самого Архимеда.

Первое упоминание о методе появляется в начале сочинения о квадратуре параболы, перед кубистским доказательством с помощью осколков. Архимед признает, что именно метод привел его к этому доказательству и прежде всего к числу 4/3.

Что же это за метод и что в нем такого личного, блестящего и трансгрессивного? Метод механический; Архимед ищет площадь сегмента параболы, мысленно его взвешивая. Он думает об этой криволинейной области как о материальном предмете – я представляю его в виде тонкого листа металла, обрезанного до желаемой параболической формы, – а затем помещает его на один конец воображаемых весов. Или, если вам так удобнее, представьте его на конце воображаемой доски-качалки. Затем он выясняет, как уравновесить этот предмет с помощью фигуры, которую он уже умеет взвешивать, – треугольника. Отсюда он выводит площадь первоначального сегмента параболы.

Это еще более творческий подход, чем его кубистско-геометрическая техника осколков и треугольников, которую мы обсуждали ранее, поскольку в этом случае Архимед собирается построить для вычислений воображаемую доску-качалку, причем так, чтобы она соответствовала размерам параболы. В совокупности его идеи дадут ответ, который он ищет.

Он начинает с сегмента параболы и наклоняет его так, чтобы ось симметрии параболы была вертикальной.



Затем он строит качалку. Инструкция по эксплуатации гласит: нарисуйте большой треугольник внутри сегмента параболы и обозначьте его ABC

. Как и в кубистском доказательстве, он будет служить стандартной мерой площади. Мы будем сравнивать с ним площадь сегмента и увидим, что она в 4/3 раза больше.



Теперь заключим наш сегмент в треугольник гораздо большего размера, ACD.



Верхняя сторона этого треугольника выбирается как касательная прямая к параболе в точке C. Основание треугольника – линия AC. Левая же сторона – линия, идущая от А вертикально вверх до пересечения с верхней стороной в точке D.

С помощью обычной евклидовой геометрии Архимед доказывает, что площадь этого большого внешнего треугольника ACD вчетверо превышает ABC. (Этот факт станет важным позже, а пока возьмем его на заметку.)

Следующий этап – строительство остальной части качалки: доски, двух сидений и точки опоры. Доска – это линия, соединяющая два сиденья. Она начинается в точке C (первое сиденье), проходит через B, пересекает границу внешнего треугольника в F (это будет точка опоры) и продолжается далее до точки S (второе сиденье), которая определяется как FS = FC. Иными словами, F – середина отрезка SC

.



И вот тут появляется ошеломляющая идея, лежащая в основе всей концепции. Используя известные факты о параболах и треугольниках, Архимед доказывает, что можно уравновесить большой внешний треугольник относительно сегмента параболы, если представлять его по одной вертикальной линии за раз. Он считает обе фигуры состоящими из бесконечного количества параллельных отрезков, похожих на бесконечно тонкие планки или ребра. Вот типичная пара вертикальных линий-ребер. Короткое ребро соединяет основание с параболой,



а длинное ребро – с верхней стороной внешнего треугольника.



Суть идеи состоит в том, что эти ребра идеально уравновешивают друг друга, как дети, качающиеся на доске, если они находятся в правильных точках. Архимед доказывает, что если сдвинуть короткое ребро до точки S

, а длинное оставить на своем месте, то они уравновешиваются.



То же самое верно для любого вертикального кусочка. Неважно, какой вертикальный срез вы сделаете, короткое ребро всегда уравновесит длинное, если вы поместите его в точку S, а длинное оставите на месте.

Поэтому две фигуры уравновешивают друг друга: ребро за ребром. Если перенести все ребра параболы в S, то они уравновешивают все ребра внешнего треугольника ACD. Соответственно, вся масса параболы, перемещенная в S, уравновешивает внешний треугольник, находящийся там, где он есть.

Далее Архимед заменяет весь внешний треугольник одной эквивалентной точкой под названием центр тяжести треугольника. Эта точка – словно «заместитель» треугольника. Весь треугольник воздействует на доску качелей так, будто вся его масса сосредоточена в одной точке – центре тяжести. Этот центр, как Архимед уже показал в другой работе, лежит внутри треугольника на линии FC в точке, расстояние от которой до F ровно в три раза меньше, чем расстояние SF.

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Педагогика / Образование и наука / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература