С помощью метода Архимед установил, что объем вписанного в цилиндр шара составляет 2/3 от объема цилиндра, а площадь поверхности этого шара – 2/3 от площади поверхности описанного цилиндра. Обратите внимание, что он не дал
Его слова в трактате «О шаре и цилиндре» показывают, насколько ему нравится результат: «Разумеется, эти свойства были присущи этим телам всегда, но они остались неизвестными всем геометрам»[69]
. Не обращайте внимания на нотки гордости, а сосредоточьтесь на его утверждении, что «свойства были присущи этим телам всегда, но они остались неизвестными». Здесь он выражает философию математики, близкую сердцам всех математиков. Мы чувствуем, чтоКогда я читаю, как Архимед радуется обнаружению соотношений для площади поверхности и объема шара, я испытываю аналогичные ощущения. Или, скорее, понимаю, что он чувствовал то же самое, что и все мои коллеги-математики. Хотя нам говорят, что «прошлое – это чужая страна»[70]
, она не может быть чужой во всех отношениях. Люди, о которых мы читаем у Гомера и в Библии, очень похожи на нас. То же самое, по-видимому, верно и в отношении древнегреческих математиков, по крайней мере Архимеда, единственного, кто впустил нас в свое сердце.Двадцать два века назад, написав письмо своему другу Эратосфену, библиотекарю в Александрии, Архимед, по сути, отправил ему математическое послание в бутылке, которое тогда практически никто не мог оценить, но он надеялся, что оно благополучно преодолеет моря времени. Он делился своей интуицией, своим методом, желая, чтобы он помог будущим поколениям математиков «найти другие теоремы, которые не выпали на нашу долю». Шансы были против него. Времена всегда были жестокими. Царства рушились, библиотеки сжигались, рукописи портились. Ни одна копия «Метода» не пережила периода Средневековья. Хотя Леонардо да Винчи, Галилей, Ньютон и другие гении Возрождения и научной революции изучали то, что осталось от трудов Архимеда, у них не было возможности прочитать «Метод». Считалось, что он безвозвратно утерян.
А затем каким-то чудом его нашли.
В октябре 1998 года потрепанный средневековый молитвенник был выставлен на аукцион Christie’s и продан анонимному частному коллекционеру за 2,2 миллиона долларов. Под латинскими молитвами просматривались едва различимые геометрические чертежи и математический текст, написанный на греческом языке в X веке. Книга оказалась палимпсестом: в XIII веке ее пергаментные листы были вымыты и очищены от греческого текста ради написанных поверх литургий на латыни. К счастью, греческий текст не был полностью уничтожен. Это оказалась единственная сохранившаяся копия «Метода» Архимеда[71]
.На палимпсест Архимеда[72]
, как сейчас называют эту рукопись, впервые обратили внимание в 1899 году, когда он находился в православной библиотеке в Константинополе. Ренессанс и научную революцию он пролежал незамеченным в лавре Саввы Освященного недалеко от Вифлеема. Сейчас он находится в художественном музее Уолтерса в Балтиморе, где был с любовью отреставрирован и исследован с применением новейших технологий воссоздания изображений[73].Наследие Архимеда живо и сегодня[74]
. Взгляните на анимированные фильмы[75], которые так любят смотреть наши дети. Персонажи «Шрека», «В поисках Немо» или «Истории игрушек» кажутся такими живыми и настоящими отчасти потому, что воплощают идею Архимеда: любую гладкую поверхность можно надежно аппроксимировать треугольниками. Например, вот три триангуляции головы манекена[76]:Питер Шрёдер
Чем больше треугольников мы возьмем и чем меньше их размер, тем лучше становится приближение.