Рассмотрим показательную функцию 10
Кроме выполнения роли обратной к показательной функции, логарифмы также описывают многие природные явления. Например, наше восприятие высоты тона примерно логарифмическое. Когда высота тона поднимается на последовательные октавы, от одной ноты
Натуральный логарифм и его показательная функция
Каким бы полезным ни было основание 10 в пору своего расцвета, в современном анализе оно редко используется, уступив место другому основанию, которое хоть и выглядит заумно, но оказывается куда более естественным, нежели 10. Оно называется числом
Позвольте повторить это еще раз.
Скорость роста функции
Это чудесное свойство упрощает все вычисления с показательными функциями, если они выражены по основанию
Помимо роли в упрощении анализа, основание
Представьте, что вы положили в банк 100 долларов при немыслимой, но крайне соблазнительной ставке в 100 процентов годовых. Это означает, что через год ваши 100 долларов превратятся в 200. Теперь начнем сначала и рассмотрим еще более благоприятный сценарий. Допустим, вы убедили банк начислять проценты дважды в год, чтобы вы могли пользоваться процентами с процентов по мере роста вклада. Сколько вы заработаете в этом случае? Учитывая, что вы просите банк начислять проценты вдвое чаще, справедливо, чтобы процентная ставка за полгода составила половину, то есть 50 процентов. Тогда через 6 месяцев вы получите 100 × 1,5 = 150 долларов. А за следующие 6 месяцев, в конце года, сумма вырастет еще на 50 процентов и на вашем счету будет 150 × 1,50 = 225 долларов. Это больше, чем вы получали по первоначальной договоренности, поскольку теперь вам начисляют проценты на проценты.
Теперь ответим на вопрос, что произойдет, если вы сможете убедить банк начислять проценты еще чаще, пропорционально уменьшая процентную ставку для каждого периода начисления? Станете ли вы баснословно богаты? К сожалению, нет. Если начислять проценты раз в квартал (то есть четыре раза в год), то в конце года на счету будет 100 × 1,254
≈ 244,14 доллара – не намного больше по сравнению с 225. Если начислять проценты каждый день, то есть 365 раз в год, то вы получите в конце года всего лишьЭта формула означает, что каждый день ваш вклад увеличивается на 1/365 часть и это увеличение происходит 365 дней подряд.
Наконец, предположим, что начисление процентов происходит еще чаще. Пусть банк начисляет их раз в год, где
Если устремить
В банковском деле описанная финансовая конструкция называется