В прикладной математике эволюция анализа – это история нашего расширяющегося понимания изменений. Как мы уже видели, анализ начался с изучения кривых, где изменения были изменениями направления, и продолжился изучением движения, когда изменения стали изменениями местоположений. После своего «кембрийского взрыва», и особенно с развитием дифференциальных уравнений, анализ перешел к изучению изменений в более общем смысле. Сегодня дифференциальные уравнения помогают нам предсказывать распространение эпидемий, место появления урагана и сколько платить за опцион на покупку акций в будущем[259]
. Во всех областях человеческой деятельности дифференциальные уравнения стали основой для описания изменений в вещах вокруг и внутри нас, от субатомного уровня до самых дальних уголков космоса.Самый ранний триумф дифференциальных уравнений изменил ход развития западной культуры. В 1687 году Исаак Ньютон предложил систему мира[260]
, которая демонстрировала силу разума и положила начало эпохе Просвещения[261]. Он открыл несколько уравнений – законы движения и тяготения, – которые смогли объяснить загадочные закономерности, обнаруженные Галилем и Кеплером в падении тел на Земле и в орбитах планет Солнечной системы, и тем самым устранил пропасть между земным и небесным. После Ньютона существовала только одна Вселенная, с одинаковыми законами, действовавшими везде и всегда.В своем фундаментальном трехтомном шедевре «Математические начала натуральной философии» (чаще называемом просто «Начала») Ньютон применил свои теории к самым разным вещам: форме Земли с ее слегка выпуклой талией, вызванной центробежными силами при вращении; ритму приливов и отливов; эксцентрическим орбитам комет; движению Луны – задаче настолько сложной, что Ньютон даже пожаловался своему другу Эдмунду Галлею, что от нее у него «разболелась голова, и он так часто не мог уснуть, что больше не думал об этом»[262]
.Сегодня при изучении физики студентам сначала преподают классическую механику – механику Ньютона и его последователей, после чего сообщают, что ее вытеснили теория относительности Эйнштейна и квантовая теория Планка, Эйнштейна, Бора, Шрёдингера, Гейзенберга и Дирака. В этом, безусловно, немало правды. Новые теории опровергли представления Ньютона о пространстве и времени, массе и энергии, да и самом детерминизме, заменив его в случае квантовой теории более вероятностным, статистическим описанием природы.
Однако это не изменило роли анализа. И в теории относительности, и в квантовой механике законы природы по-прежнему записываются на языке анализа, с предложениями в виде дифференциальных уравнений. Для меня величайшее наследие Ньютона заключено именно в этом. Он показал, что природа логична. Причина и следствие в мире ведут себя во многом так же, как доказательство в геометрии, когда одна истина вытекает из другой, с той лишь разницей, что в мире одно
Эта сверхъестественная связь между природой и математикой восходит к пифагорейской мечте. Связь между музыкальной гармонией и числами, открытая пифагорейцами, побудила их провозгласить, что
Ньютон первым проник в эту логику Вселенной и построил вокруг нее систему. До него это было невозможно из-за отсутствия необходимых понятий. Архимед не был знаком с дифференциальными уравнениями. Не знали их и Галилей, Кеплер, Декарт и Ферма. Лейбниц знал, но не обладал такой склонностью к науке, как Ньютон, и его математической виртуозностью. Тайная логика природы была дарована только Ньютону.
Центральной частью его теории стало дифференциальное уравнение движения:
Это одно из самых важных уравнений в истории. Оно говорит, что сила
Здесь