Чтобы проверить его количественно, он оценил центростремительное ускорение Луны, поскольку она обращается вокруг Земли на известном расстоянии (примерно в 60 раз превышающем радиус Земли) с известным периодом обращения (около 27 дней), а затем сравнил ускорение Луны с ускорением падающих тел на Земле, которое Галилей измерял в своих экспериментах с наклонной плоскостью. Ньютон обнаружил, что эти две величины отличаются коэффициентом, который обнадеживающе близок к 3600, то есть к 602
. Но ведь именно это и предсказывал закон обратных квадратов. Поскольку Луна находится в 60 раз дальше от центра Земли, чем падающее с дерева яблоко, ее ускорение должно быть в 602 раз меньше. Позже Ньютон вспоминал, что «сравнил силу, необходимую для удержания Луны на ее орбите, с силой тяжести на поверхности Земли и обнаружил, что они неплохо соответствуют»[264].В то время мысль, что сила тяготения может распространяться на Луну, казалось безумной. Вспомните, что в доктрине Аристотеля все, что ниже Луны, считалось тленным и несовершенным, а все, что выше, – идеальным, вечным и неизменным. Ньютон разрушил эту парадигму. Он объединил небо и землю и показал, что и то и другое описывается одними и теми же законами физики.
Примерно через двадцать лет после открытия закона обратных квадратов[265]
Ньютон сделал перерыв в своем увлечении алхимией и библейской хронологией и вернулся к вопросу движения под действием силы гравитации. Его подтолкнули к этому коллеги и соперники из Лондонского королевского общества. Они предложили ему разобраться с гораздо более сложной, по сравнению с предыдущими, задачей, которую никто из них не знал, как решить: если предположить, что сила притяжения со стороны Солнца убывает по закону обратных квадратов, то как бы двигались планеты? «По эллипсам»[266], – сразу же ответил Ньютон, когда Эдмунд Галлей задал ему этот вопрос. Удивленный Галлей спросил, откуда он знает, на что ученый ответил: «Я это вычислил». Когда Галлей убедил его опубликовать это доказательство, Ньютон вернулся к своей старой работе. В неистовом приливе активности, почти столь же яростном, как во время чумы, Ньютон написал «Начала».Приняв три закона движения и закон тяготения за аксиомы и используя анализ в качестве дедуктивного инструмента, Ньютон доказал, что отсюда логически следуют все три закона Кеплера[267]
. То же самое было верно для закона инерции Галилея, изохронности маятников, правила нечетных чисел для скатывания шаров и параболических дуг, по которым летят предметы. Все они были следствием закона обратных квадратов и соотношенияВопрос, который Галлей задал Ньютону, был чудовищно трудным. Он требовал преобразовать локальную информацию в глобальную, что было основной трудностью интегрального исчисления и прогнозирования, как мы обсуждали в главе 7
.Подумайте о том, как можно спрогнозировать гравитационное взаимодействие двух тел. Чтобы упростить задачу, представьте, что одно из них (Солнце) бесконечно массивно и поэтому неподвижно, в то время как другое (планета) движется вокруг него. Изначально планета находится на некотором расстоянии от Солнца, в определенном месте, и движется в заданном направлении с заданной скоростью. В следующий момент скорость планеты перемещает ее в новое положение, бесконечно близкое к тому, где она была момент назад. Поскольку местоположение изменилось, чуть-чуть изменилось и гравитационное притяжение от Солнца – и по направлению, и по величине. Эта новая сила (вычисляемая по закону обратных квадратов) влечет планету дальше и меняет ее скорость и направление движения на новую бесконечно малую величину (вычисляемую по формуле
Таким образом, использование