Читаем Бесконечная сила. Как математический анализ раскрывает тайны вселенной полностью

Чтобы проверить его количественно, он оценил центростремительное ускорение Луны, поскольку она обращается вокруг Земли на известном расстоянии (примерно в 60 раз превышающем радиус Земли) с известным периодом обращения (около 27 дней), а затем сравнил ускорение Луны с ускорением падающих тел на Земле, которое Галилей измерял в своих экспериментах с наклонной плоскостью. Ньютон обнаружил, что эти две величины отличаются коэффициентом, который обнадеживающе близок к 3600, то есть к 602. Но ведь именно это и предсказывал закон обратных квадратов. Поскольку Луна находится в 60 раз дальше от центра Земли, чем падающее с дерева яблоко, ее ускорение должно быть в 602 раз меньше. Позже Ньютон вспоминал, что «сравнил силу, необходимую для удержания Луны на ее орбите, с силой тяжести на поверхности Земли и обнаружил, что они неплохо соответствуют»[264]

.

В то время мысль, что сила тяготения может распространяться на Луну, казалось безумной. Вспомните, что в доктрине Аристотеля все, что ниже Луны, считалось тленным и несовершенным, а все, что выше, – идеальным, вечным и неизменным. Ньютон разрушил эту парадигму. Он объединил небо и землю и показал, что и то и другое описывается одними и теми же законами физики.

Примерно через двадцать лет после открытия закона обратных квадратов[265] Ньютон сделал перерыв в своем увлечении алхимией и библейской хронологией и вернулся к вопросу движения под действием силы гравитации. Его подтолкнули к этому коллеги и соперники из Лондонского королевского общества. Они предложили ему разобраться с гораздо более сложной, по сравнению с предыдущими, задачей, которую никто из них не знал, как решить: если предположить, что сила притяжения со стороны Солнца убывает по закону обратных квадратов, то как бы двигались планеты? «По эллипсам»[266]

, – сразу же ответил Ньютон, когда Эдмунд Галлей задал ему этот вопрос. Удивленный Галлей спросил, откуда он знает, на что ученый ответил: «Я это вычислил». Когда Галлей убедил его опубликовать это доказательство, Ньютон вернулся к своей старой работе. В неистовом приливе активности, почти столь же яростном, как во время чумы, Ньютон написал «Начала».

Приняв три закона движения и закон тяготения за аксиомы и используя анализ в качестве дедуктивного инструмента, Ньютон доказал, что отсюда логически следуют все три закона Кеплера[267]. То же самое было верно для закона инерции Галилея, изохронности маятников, правила нечетных чисел для скатывания шаров и параболических дуг, по которым летят предметы. Все они были следствием закона обратных квадратов и соотношения F = ma

. Такое обращение к дедуктивным рассуждениям потрясло коллег ученого и обеспокоило их по философским соображениям. Многие из них были эмпириками: они полагали, что логика применима только внутри самой математики, а природу нужно изучать путем экспериментов и наблюдений. Их ошеломила мысль, что природа обладает внутренним математическим ядром и что ее явления можно логически вывести из эмпирических аксиом вроде законов тяготения и движения.

Задача двух тел

Вопрос, который Галлей задал Ньютону, был чудовищно трудным. Он требовал преобразовать локальную информацию в глобальную, что было основной трудностью интегрального исчисления и прогнозирования, как мы обсуждали в главе 7.

Подумайте о том, как можно спрогнозировать гравитационное взаимодействие двух тел. Чтобы упростить задачу, представьте, что одно из них (Солнце) бесконечно массивно и поэтому неподвижно, в то время как другое (планета) движется вокруг него. Изначально планета находится на некотором расстоянии от Солнца, в определенном месте, и движется в заданном направлении с заданной скоростью. В следующий момент скорость планеты перемещает ее в новое положение, бесконечно близкое к тому, где она была момент назад. Поскольку местоположение изменилось, чуть-чуть изменилось и гравитационное притяжение от Солнца – и по направлению, и по величине. Эта новая сила (вычисляемая по закону обратных квадратов) влечет планету дальше и меняет ее скорость и направление движения на новую бесконечно малую величину (вычисляемую по формуле F

 = ma) за следующий бесконечно малый момент времени. Процесс продолжается до бесконечности. Чтобы построить полную орбиту планеты, нужно как-то объединить, сложить вместе все эти бесконечно малые локальные шажки.

Таким образом, использование F = ma в задаче двух тел – это еще одно упражнение в применении принципа бесконечности. Архимед и другие ученые использовали его для загадки кривых, Ньютон же первым применил его к загадке движения. Какой бы безнадежной ни казалась задача двух тел, Ньютон сумел решить ее с помощью основной теоремы анализа. Вместо того чтобы двигать планету вперед момент за моментом, он использовал анализ, чтобы толкать ее вперед огромными скачками, словно по волшебству. Его формулы могли предсказать, где окажется планета и с какой скоростью она будет двигаться в любой будущий момент времени, какой только можно пожелать.

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Педагогика / Образование и наука / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература