Читаем Биология. В 3-х томах. Т. 3 полностью

23.2. Почему в анализирующем скрещивании нельзя использовать особь, гомозиготную по доминантному аллелю (например, ГТ), чтобы определить генотип особи, обладающей доминантным фенотипом? Проиллюстрируйте свой ответ схемой скрещивания с применением надлежагщих генетических символов.

23.1.3. Дигибридное скрещивание и закон независимого распределения

Установив возможность предсказывать результаты скрещиваний по одной паре альтернативных признаков, Мендель перешел к изучению наследования двух пар таких признаков. Скрещивания между особями, различающимися по двум признакам, называют дигибридными.

В одном из своих экспериментов Мендель использовал растения гороха, различающиеся по форме и окраске семян. Применяя метод, описанный в разд. 23.1.1, он скрещивал между собой чистосортные (гомозиготные) растения с гладкими желтыми семенами и чистосортные растения с морщинистыми зелеными семенами. У всех растений F1 (первого поколения гибридов) семена были гладкие и желтые. По результатам проведенных ранее моногибридных скрещиваний Мендель уже знал, что эти признаки доминантны; теперь, однако, его интересовали характер и соотношение семян разных типов в поколении F2, полученном от растений F

1 путем самоопыления. Всего он собрал от растений F2 556 семян, среди которых было

гладких желтых 315

морщинистых желтых 101

гладких зеленых 108

морщинистых зеленых 32

Соотношение разных фенотипов составляло примерно 9:3:3:1 (дигибридное расщепление). На основании этих результатов Мендель сделал два вывода:

1. В поколении F2 появилось два новых сочетания признаков: морщинистые и желтые; гладкие и зеленые.

2. Для каждой пары аллеломорфных признаков (фенотипов, определяемых различными аллелями) получилось отношение 3:1, характерное для моногибридного скрещивания — среди семян было 423 гладких и 133 морщинистых, 416 желтых и 140 зеленых.

Эти результаты позволили Менделю утверждать, что две пары признаков (форма и окраска семян), наследственные задатки которых объединились в поколении F1, в последующих поколениях разделяются и ведут себя независимо одна от другой. На этом основан второй закон Менделя — принцип независимого распределения, согласно которому каждый признак из одной пары признаков может сочетаться с любым признаком из другой пары.

Приведенный выше эксперимент можно описать с помощью известных нам генетических символов так, как это показано на рис. 23.4, А. В результате разделения (сегрегации) аллелей (R, r, Y и у) и их независимого распределения (рекомбинации) в каждой из мужских и женских гамет возможно одно из четырех сочетаний аллелей. Для того чтобы показать все возможные сочетания гамет, возникающие при случайном оплодотворении, используют запись в виде решетки Пённета, названной так по имени кембриджского генетика; она позволяет свести к минимуму ошибки, которые могли бы возникнуть при составлении списка всех возможных сочетаний гамет. При заполнении решетки Пённета рекомендуется сначала внести все мужские гаметы в клеточки по вертикальным столбцам, а затем все "женские" — в клеточки горизонтальных строк. Кроме того, определяя фенотипы особей F2, полезно обозначать идентичные фенотипы какими-нибудь хорошо различимыми значками (как это сделано на рис. 23.4,5). Как показывают рис. 23.4,А и Б, основанные на первом и втором законах Менделя, при каждом мужском или женском генотипе F1 возможно образование гамет со следующими сочетаниями аллелей:

R может встречаться только в сочетании с У или у (но не с r), т.е. в виде RY или Ry;

r может встречаться только в сочетании с Y или у (но не с R), т.е. в виде rY или rу.

Таким образом, для любой гаметы шанс получить какое-то одно из четырех указанных здесь сочетаний аллелей равен 1 из 4. Поскольку при моногибрид-ном скрещивании у 3/4 потомков F2 проявляется доминантный аллель, а у 1/4-рецессивный, вероятности проявления четырех рассматриваемых нами

Рис. 23.4. А. Формирование фенотипов F1 от скрещивания между гомозиготными родительскими особями. Это пример дигибридного скрещивания, поскольку рассматриваются две пары контрастирующих признаков. Б. Использование решетки Пённета с целью показать все возможные сочетания гамет при образовании генотипов в F2


Отсюда вероятности проявления соответствующих возможных сочетаний аллелей у потомков F2 равны:

Результаты экспериментов Менделя со скрещиванием сортов, различающихся по двум парам альтернативных признаков, близки к результатам этих теоретических расчетов.

Перейти на страницу:

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука