В. т. широко применяют как в промышленности, так и в лабораторной практике. Например, массовое производство различных электровакуумных приборов неразрывно связано с совершенствованием получения высокого вакуума и возможностью его поддержания. Изготовление этих приборов требует удаления газов (обезгаживания) и использования геттеров
для сохранения вакуума. Вакуумную обработку таких приборов производят на многопозиционных карусельных откачных автоматах. Приборы проходят позиции: установку, откачку, прогрев и обезгаживание с целью удаления с внутренних поверхностей адсорбированных газов, распыление геттерирующих веществ, отпайку и съём. Очистку и разделение высокомолекулярных кремнийорганических соединений, продуктов полимеризации, масляных фракций нефти, сложных эфиров, спирта, концентратов витаминов и др. продуктов производят в вакууме 10-1
н
/м
2
(10-3
мм рт. ст.
). В вакууме ведут обезгаживание и пропитывают изоляционные материалы, заливают конденсаторы и трансформаторы, пропитывают кабели, сушат вещества (например, пластмассы), которые при атмосферном давлении не высушиваются. В вакууме также сушат при комнатной и повышенной температурах и в замороженном состоянии методом сублимации термочувствительных веществ (яичный белок, ферменты, женское молоко, антибиотики, культуры бактерий, вакцины и т.д.). Вакуумными насосами удаляют растворители из веществ, не допускающих нагревания (например, взрывчатые вещества), и повышают концентрацию растворов. Вакуум нашёл применение при термическом или катодном распылении металла для нанесения покрытий и металлизации различных материалов, например в производстве оптических и бытовых зеркал, ёлочных игрушек, отражателей автомобильных и самолётных фар, украшений из металлов и пластмасс. В вакууме производят обработку тканей при крашении, металлизацию бумаги, керамики, матриц граммофонных пластинок и полупроводниковых материалов, нанесение защитных и декоративных плёнок в рабочем диапазоне давлений 10-2
—10-4
н
/м
2
(10-4
—10-6
мм рт. ст.
).
В металлургии в вакууме восстанавливают металлы из руд и их химических соединений, производят плавку, рафинирование и дегазацию металлов (см. Вакуумная плавка
, Дегазация стали
). Процессы плавки, испарения и перегонки металлов в вакууме лежат в основе получения материалов высокой чистоты. Для этого в металлургии применяют высокопроизводительные многопластинчатые пароэжекторные насосы и бустерные (пароструйные и механические) с рабочим давлением до 10-2
н
/м
2
(10-4
мм рт. ст.
).
Средства В. т. в современной экспериментальной физике обеспечивают работы электрофизических приборов и установок, в которых осуществляется движение пучков заряженных частиц. Только в сверхвысоком вакууме возможны исследования физических свойств поверхностей твёрдых тел, а также некоторые исследования, требующие получения газов высокой чистоты. В установках с откачиваемыми объёмами в сотни м
3
осуществляют непрерывную откачку множеством (до нескольких десятков) параллельно работающих высокопроизводительных насосов с быстротой откачки от сотен до десятков м3
/сек
. Наряду с диффузионными насосами широко применяются ионно-сорбционные, обладающие большой быстротой откачки и остаточным давлением ниже 10-8
н
/м
2
(10-10
мм. рт. ст.
).
Решение многих сложных проблем наука и техники требует достижения давлений 10-14
н
/м
2
(10-16
мм рт. ст.
) и ниже, а также измерения таких давлений. Для этого необходимы совершенные измерительные приборы, высокочувствительные методы проверки герметичности и создание достаточных уплотнений в аппаратуре для сверхвысокого вакуума, подготовка и очистка поверхностей откачиваемых объёмов, которая исключает выделение этими поверхностями загрязняющих газов. Лит.:
Вакуумное оборудование и вакуумная техника, под ред. А. Гутри и Р. Уокерлинг, пер. с англ., М., 1951; Яккель Р., Получение и измерение вакуума, пер. с нем., М., 1952; Ланис В. А., Левина Л. Е., Техника вакуумных испытаний, 2 изд., М. — Л., 1963; Дэшман С., Научные основы вакуумной техники, пер. с англ., М., 1964; Королев Б. И., Основы вакуумной техники, 5 изд., М. — Л., 1964; Пипко А. И., Плисковский В. Я., Пенчко Е. А., Оборудование для откачки вакуумных приборов, М. — Л., 1965. И. С. Рабинович.
Рис. 6. Первый конденсационный парортутный насос Ленгмюра: 1 — колба с ртутью; 2 — изолирующая рубашка; 3 — трубка для отвода паров ртути; 4 — канал для отвода сконденсировавшихся паров; 5 — ловушка; 6 — трубка для подсоединения насоса к откачиваемому объёму.
Рис. 4. Молекулярный насос Геде: 1 — выпускной патрубок; 2 — впускной патрубок; 3 — ротор; 4 — корпус.
Рис. 5. Первый диффузионный насос: 1 — испаритель; 2 — паропровод; 3, 5 — вход и выход проточной воды; 4 — диффузионная щель; 6 — термометр; 7 — выпускная трубка; 8 — ртутный затвор; 9 — патрубок первой откачки; 10 — впускная трубка.
Рис. 1 (слева). Шприц Герона. Рис. 2 (справа). Колба Герона для создания разрежения.