Таким образом, обучение детей выделению количественных отношений, развитие представлений о числе и числовом ряде, о составе чисел от 3 до 10, обучение решению и придумыванию арифметических задач будет способствовать развитию у них элементарных математических представлений. Использование в обучении различных наглядных моделей (пересекающихся кругов или овалов, «дорожек», полосок разного размера и т. д.), с одной стороны, даст возможность сделать представления детей обобщенными (то есть позволит использовать их не только в тех ситуациях, которые встречались в процессе обучения, но и для гораздо более широкого круга математических задач), а с другой стороны, научит выделять существенные для каждой познавательной задачи признаки, устанавливать между ними различные отношения, выполнять необходимые умственные действия, то есть разовьет умственные способности дошкольников.
Немного о логике
Перед школой детей довольно часто много упражняют в выполнении логических задач, чтобы они умели логически рассуждать, анализировать, обобщать, делать правильные выводы и т. п. И в большинстве случаев, если дети ошибаются, взрослые не понимают, как они не «видят очевидное». Если вспомнить один из фактов, впервые описанный психологом Ж. Пиаже, то можно понять недоумение взрослых. Детям показывают картинку, на которой нарисованы, например, три яблока и шесть груш, и спрашивают, можно ли назвать изображенные предметы одним словом и каким. Дети узнали и яблоки, и груши, смогли дать общее название (фрукты), определили, что груш больше. Однако если спросить, чего больше: груш или фруктов, большинство дошкольников скажут, что груш больше. В чем же проблема? Дети дошкольного возраста ориентируются, прежде всего, на то, что они видят, ведь в этом возрасте у них развивается образное мышление. Дошкольники еще не владеют рассуждениями, приводящими к правильному выводу. Как могло бы строиться рассуждение при решении приведенной выше задачи? Примерно так: «Груши и яблоки – это фрукты. Фруктов больше, чем груш, ведь фрукты – это и груши, и яблоки». Но чтобы сделать такой вывод, детям необходимо ориентироваться в сложных понятийных отношениях.
На протяжении дошкольного детства дети начинают использовать различные обобщения, например слова:
Но детский психолог Л. Венгер говорил о том, что образное мышление вовсе необязательно застревает на случайных, внешних свойствах вещей. Оно дает ребенку возможность усваивать обобщенные знания, отражающие существенные связи и отношения, если эти связи и отношения даны не просто в виде словесных рассуждений, а представлены в наглядной форме. При правильной помощи взрослых развитие именно образного познания может привести ребенка-дошкольника к усвоению законов логики. Непростые отношения между понятиями становятся доступны детям этого возраста, если представлены в наглядной форме (то есть если отношения между понятиями будут смоделированы, то дошкольник сможет ориентироваться в них и опираться на них, выстраивая свои рассуждения). Таким образом, в дошкольном возрасте на развитие способности решать задачи логического типа влияет развитие наглядного моделирования.
Логические отношения разнообразны, а наиболее часто встречающийся тип понятийных отношений – это классификационные (или родо-видовые). Между понятиями, использованными выше (груши, яблоки, фрукты), как раз существуют такие отношения. Для того чтобы представить их наглядно, используются условно-символические модели, одной из которых является модель в форме кругов. В ней понятия (слова) обозначаются кружками, различными по величине, которая зависит от степени обобщенности. Так, например, понятию «фрукты» будет соответствовать больший круг, чем понятию «яблоки». А сами отношения будут передаваться с помощью пространственного расположения кругов (рис. 90).