Бета – это число, которое можно найти в техническом описании, иногда его также называют Hfe (хотя это и не совсем одно и то же, но на практике эти два символа мало отличаются друг от друга); для транзистора модели 2N2222 значение бета может колебаться от 100 до 300. Значение указывается приблизительно, так как бета является переменным числом, которое может изменяться. По этой причине схема усилителя, что мы видели раньше, является простой, но не точной, потому что I сильно зависит от параметра бета, а также от температуры окружающей среды, что существенно влияет на изменение тока, поступающего на базу. Наилучшая схема, широко используемая на практике, включает также делитель напряжения на входе для фиксирования значения I.
Рис. 4.17.
Для фиксирования тока базы может быть использован делитель напряжения: электрическая цепь более стабильнаКаково значение тока на базе в этом случае? Мы имеем ток, текущий между R и R, и часть этого тока выходит из делителя и поступает на базу биполярного транзистора. Эмпирический метод для определения сопротивления для усилителя на транзисторе – это использовать макетную плату с триммером (подстроечным резистором) вместо резистора, таким образом подав сигнал на вход, мы можем проверить выходной сигнал с помощью осциллографа (или с ардуиноскопа, описанного в приложении). Методом проб и ошибок мы можем регулировать триммер до тех пор, пока выходной сигнал не станет подходящим для нас. Чтобы сгенерировать пробный сигнал, можно использовать генератор сигналов или построить пробную электрическую цепь (мы рассмотрим это в последующих главах).
Чтобы определить величину тока базы, выходящего из делителя напряжения, мы будем использовать прием под названием «Эквивалентная схема Тевенена», в которой заменим два резистора источником напряжения и одним резистором.
В первую очередь мы должны перестроить схему, отделяя все элементы, находящиеся справа от транзистора, от тех, что располагаются слева от него. Цепь питается от одной батарейки, но так как мы разделили ее на две части, нам необходимо использовать две батарейки, по одной на каждой стороне с одинаковым напряжением. Очевидно, что все элементы будут располагаться вместе. Изменения служат только для упрощения вычислений. Реальная цепь все та же, что имеет делитель напряжения на входе.
Рис. 4.18.
Чтобы рассчитать эквивалент Тевенена, нам необходимо изменить схему для упрощения вычислений: добавив вторую батарейку, мы имеем две различные цепи справа и слева от транзистораВ соответствии с теорией Тевенена необходимо заменить все генераторы коротким замыканием. Таким образом, два сопротивления R и R будут соединены параллельно. Вычислим эквивалентное сопротивление и обозначим его R.
Рис. 4.19.
Исключаем генераторы и перегруппировываем сопротивления, получив один генератор и один резисторДля вычисления эквивалентного значения генератора мы не берем во внимание транзистор, а рассматриваем только цепь, образованную генератором и двумя последовательно соединенными резисторами. Эквивалентное напряжение генератора равно падению напряжения на резисторе R. Вычислим ток, протекающий в цепи, передвигаясь по часовой стрелке и суммируя напряжения:
U – R · i – R · i = 0
Перепишем формулу, перенесем напряжение источника питания на левую сторону:
U = R · i + R · i
Выносим за скобки эквивалентный ток Iэкв:
U = i (R + R)
Перепишем формулу для тока:
Теперь нам необходимо рассчитать напряжение на резисторе R, назовем его «эквивалентное напряжение Тевенена»:
Uэкв
= R · iПопробуем подставить значения в формулы и посмотреть, что получится. Имея R = 100 кОм, R = 20 кОм, U = 9 В, получим:
U = 20 (кОм) · 0,075 (мА) = 1,5 (В)
Эквивалентная цепь имеет сопротивление 16,67 кОм и генератор напряжения 1,5 В. Теперь мы можем вычислить ток базы транзистора, рассчитав сумму напряжений цепи на входе, которая образована эквивалентным генератором, эквивалентным сопротивлением и падением напряжения между базой и эмиттером биполярного транзистора. Падение напряжения нам неизвестно, но если мы хотим, чтобы транзистор находился в активном режиме, оно должно иметь значение не менее 0,5 В. Предположим, что падение напряжения между базой и эмиттером равно 0,5 В.
Рис. 4.20.
Теоретическая схема цепи, в которой транзистор соединен с генератором и эквивалентным напряжениемНапряжения в цепи:
Uэкв
– i · Rэкв – 0,5 = 0Базовый ток составляет:
Имея ток базы, можно рассчитать ток коллектора.
Давайте попробуем изменить значение одного из сопротивлений: R61
= 100 кОм и R62 = 5 кОм, U = 9 В. Находим: Rэкв = 4,76 кОм и Uэкв = 0,428 В, чтосоставляет менее 0,5 В. Но напряжение между базой и эмиттером транзистора должно быть по меньшей мере 0,5 В, в противном случае транзистор будет выключен. Поэтому очень важно выбрать подходящие сопротивления на делителе напряжения, чтобы U превышало значение 0,5 В.Вернемся к вычислению тока коллектора. Для транзистора модели 2N2222 коэффициент β составляет около 200, следовательно:
Iк
= β · Iб = 200 · 0,060 (мА) = 12 (мА)