Идея законсервированного генетического набора жизни родилась в мире evo-devo
[34]. Если коротко, то эта научная дисциплина предполагает, что эволюция во всех организмах использует одни и те же ингредиенты, но каждый раз ведет сложную работу с рецептами. Экспрессия генов в разное время развития и/или в разных частях тела приводит к тому, что одни и те же гены могут быть использованы в разных комбинациях – это делает возможным развитие, генерирует фенотипическое разнообразие и обновление. Животные выглядят по-разному не потому, что у них разные молекулярные аппараты, а потому, что разные части этих аппаратов активированы в разной степени в разное время, в разных местах и в разных комбинациях. Число комбинаций в самом деле огромно, и это дает правдоподобное объяснение развитию сложных и разнообразных фенотипов даже из малого числа генов. Например, в геноме человека всего лишь 21000 генов, однако мы представляем собой, пожалуй, один из самых сложных продуктов эволюции.Хрестоматийный пример – это суперконтроллер развития, Hox
-гены: набор генов, которые говорят телам в каждой основной животной группе, где им следует отращивать головы, хвосты, руки, ноги. Hox-гены есть у мышей, червей, людей… Они унаследованы от общего предка. Другие генные наборы отвечают за развитие глаз или за цвет волос (оперения). Генные наборы стары, они присутствуют во всех животных и делают для всех животных примерно одно и то же. Нельзя отрицать, что законсервированный геномный материал формирует важную часть молекулярных строительных блоков жизни.Однако сейчас мы можем de novo
, то есть с самого начала, секвенировать геномы и транскриптомы (гены, работающие здесь и сейчас) любого организма. У нас есть последовательности для водорослей, питонов, зеленых морских черепах, рыбы фугу, пестрых мухоловок, утконосов, коал, обезьян бонобо, гигантских панд, дельфинов-афалин, муравьев-листорезов, бабочек-монархов, тихоокеанских устриц, пиявок – список растет по экспоненте. И каждый новый геном несет в себе набор уникальных генов. У круглых червей 20 % генов уникальны. В каждой линии муравьев содержится примерно 4000 новых генов, но только 64 гена сохраняются во всех 7 муравьиных геномах, которые к настоящему времени прослежены.Многие из этих уникальных («новых») генов оказываются важными в эволюции биологических инноваций. Морфологические различия между близкородственными пресноводными полипами Hydra
могут объясняться маленькой группой новых генов. Новые гены оказываются важными у рабочих пчел, ос и муравьев. Гены, специфичные для тритонов, могут играть роль в их поразительной способности регенерировать ткани. У людей новые гены ассоциируются с такими тяжелыми заболеваниями, как лейкозы и болезнь Альцгеймера.Жизнь геномно сложна, и эта сложность играет важнейшую роль в развитии многообразия жизни. Легко увидеть, как инновация может улучшаться путем естественного отбора: например, как только появился первый глаз, он сразу стал подвергаться суровому отбору, чтобы увеличить приспособленность (способность к выживанию) его хозяина. Сложнее объяснить, как появляются новации, особенно из законсервированного геномного набора. Дарвиновская эволюция объясняет, как организмы и их признаки развиваются, но не как они возникли. Как появился первый глаз? Или, более точно, как впервые появился главный регуляторный ген для развития глаза у всех животных? Способность к развитию новых фенотипических признаков – будь то морфологические, физиологические или поведенческие – играет решающую роль для выживания и адаптации, особенно в меняющейся (или новой) среде.