Посмотрим теперь, как применить нашу общую формулу (29.16) для сложения полей излучения двух осцилляторов к тем частным случаям, которые мы уже качественно обсуждали. Для этого необходимо лишь вычислить разность фаз j1
-j2 двух сигналов, приходящих в данную точку пространства. (Эффект, разумеется, связан с разностью фаз, а не с их абсолютными значениями.) Рассмотрим случай, когда два осциллятора с равными амплитудами и с относительной фазой колебаний а (когда колебания одного имеют фазу нуль, фаза другого равна а) расположены на расстоянии d друг от друга. Будем искать интенсивность под углом q к линии запад — восток. [Заметьте, что этот угол не имеет ничего общего с углом q в формуле (29.1).] Разность расстояний от точки Рдо осцилляторов равна dsinq (фиг. 29.10), поэтому разность фаз, возникающая по этой причине, равна числу длин волн, заключенных на отрезке dsinq, умноженному на 2p.
Фиг. 29.10. Два осциллятора, обладающие одинаковой амплитудой и разностью фаз a.
(Более подготовленный читатель, вероятно, умножил бы волновое число k, т. е. скорость изменения фазы с расстоянием, на d
sin 0, результат получится тот же самый.) Разность фаз, возникающая из-за разности хода лучей, есть, таким образом, (2pdsinq)/l, но из-за относительного запаздывания осцилляторов возникает дополнительная разность фаз a. Отсюда полная разность фаз двух волн в точке наблюдения равна(29.17)
Это выражение охватывает все случаи. Теперь остается только подставить его в (29.16) и положить A1
=А2; получится формула, с помощью которой можно вывести все результаты для двух антенн одинаковой интенсивности.Рассмотрим частные случаи. Например, на фиг. 29.5 мы полагали, что интенсивность на угол 30° равна 2. Откуда это получается? Осцилляторы находятся на расстоянии X/2,
следовательно, для угла 30° dsinq=l/4, отсюда j2-j1=2pl/4l=p/2 и интерференционный член равен нулю. (Происходит сложение двух векторов, направленных под углом 90" друг к другу.) Сумма векторов есть гипотенуза прямоугольного равнобедренного треугольника, она в Ц2раз больше каждой амплитуды. Следовательно, интенсивность в 2 раза больше интенсивности каждого источника в отдельности. Все остальные примеры исследуются точно таким же способом.
Глава 30
ДИФРАКЦИЯ
§ 1. Результирующее поле n одинаковых осцилляторов
§ 2. Дифракционная решетка
§ 3. Разрешающая способность дифракционной решетки
§ 4. Параболическая антенна
§ 5. Окрашенные пленки; кристаллы
§ 6. Дифракция на непрозрачном экране
§ 7. Поле системы осцилляторов, расположенных на плоскости
§ 1. Результирующее поле n одинаковых осцилляторов
Настоящая глава — непосредственное продолжение предыдущей, хотя название «Интерференция»
здесь заменено словом «Дифракция». До сих пор никому не удалось удовлетворительным образом определить разницу между дифракцией и интерференцией. Дело здесь только в привычке, а существенного физического различия между этими явлениями нет. Единственное, что можно сказать по этому поводу,— это следующее: когда источников мало, например два, то результат их совместного действия обычно называют интерференцией, а если источников много, то чаще говорят о дифракции. Поэтому мы не будем утруждать себя вопросом — интерференция это или дифракция, а просто продолжим наше обсуждение с того места, где мы остановились в предыдущей главе.
Обсудим теперь случай, когда имеется n осцилляторов, расположенных на равных расстояниях один от другого и обладающих равными амплитудами, но разными фазами создаваемых ими полей. Разность фаз создается либо из-за выбора определенных фазовых сдвигов колебаний осцилляторов, либо потому, что мы находимся под углом к осцилляторам и возникает разность хода лучей. Независимо от причины возникновения разности фаз необходимо вычислить сумму такого вида:
где j — разность фаз соседних осцилляторов для некоторого направления лучей. В данном частном случае j=a+2pd1
/2sinq. Вычислим сумму R. Для этого воспользуемся геометрическим способом сложения. Длина первого слагаемого А,а его фаза равна нулю; длина второго также А, а фаза его равна j. Следующее слагаемое имеет снова длину А и фазу, равную 2j, и т. д. В конце концов получается часть правильного многоугольника с nсторонами (фиг. 30.1).
Фиг. 30.1. Результирующая амплитуда шести аквидистантных источников при разности фаз
j между каждыми двумя соседними источниками.