Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть
(30.2)
Таким образом, суммарная интенсивность оказывается равной
(30.3)
Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n =1, получим, как и следовало ожидать, I = I0
. Проверим формулу для n=2: с помощью соотношения sinj=2sin j/2cosj/2 сразу находимМы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших nи j, близких к нулю. Прежде всего, когда j точно равно нулю, мы получаем отношение О/О, но фактически для бесконечно малых j отношение синусов равно n2
, так как синус можно заменить его аргументом. Таким образом, максимум кривой в nС ростом фазы j отношение двух синусов падает и обращается в нуль в первый раз при nj/2 = p, поскольку sinp=0. Другими словами, значение j=2p
Перейдем к следующему максимуму и покажем, что он действительно, как мы и ждали, много меньше первого. Для точного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с изменением j. Мы не станем этого делать, поскольку при большом n sinj/2 меняется медленнее sinj/2 и условие sinj/2 =1 дает положение максимума с большой точностью. Максимум sin2
nj/2 достигается при nj/2=Зp/2 или j= Зp/n. Это означает, что стрелки векторов описывают полторы окружности.Подставляя j=3p/n, получаем sin2
3p/2=l в числителе (30.3) (с этой целью и был выбран угол j) и sin23n/2n в знаменателе. Для достаточно большогоМожно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2pnI0
и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной линии, как показано на фиг. 30.3. Всего имеется nисточников на расстоянии d друг от друга, и сдвиг фазы между соседними источниками выбран равным
дополнительный сдвиг фазы 2pd(1/l)sinq. Таким образом,
(30.4)
Рассмотрим сначала случай a=0. Все осцилляторы колеблются с одной фазой; требуется найти интенсивность их излучения как функцию угла В. Подставим с этой целью
Он возникает при j=2p/n; другими словами, первый минимум кривой интенсивности определяется из соотношения (2pd/l)sinq
(30.5)