Читаем Фейнмановские лекции по гравитации полностью

Наша теория дала нам выражение для амплитуды гравитационного рассеяния одной частицы другой. Для того, чтобы вычислить что-нибудь, что имеет измеримую величину, мы должны придти к очень большим значениям массы, и для того, чтобы наблюдать эффект, который не определяется ньютоновским законом, нам необходимо использовать движения со скоростями, близкими к скорости света. Мы можем, например, вычислить угол отклонения тела малой массы, движущегося с очень большой скоростью (𝑣≈𝑐), которое отклоняется звездой, такой как Солнце. Здесь нам необходимо обосновать замену суммы амплитуд от всех частиц в звезде одной амплитудой, соответствующей массе 𝑀; подобная замена является аппроксимацией, но она даёт правильный ответ в первом порядке некоторого типа. Такой угол больше, чем его величина в рамках ньютоновской теории, и отличается на множитель (1+𝑣²/𝑐²).

Нельзя говорить о том, что этот результат соответствует отклонению света Солнца, потому что фотон не является скалярной частицей, отсюда следует, что он не может представляться скалярным массовым полем φ. Для рассеяния двух идентичных частиц такая амплитуда должна содержать обменный член, но для случая звезды - частицы, очевидно, не идентичны.

В нашей теории до сих пор не рассматривалась возможность того, что мы могли бы добавить член с нулевой дивергенцией к нашему тензору давления 𝑇μν; это соответствовало бы другому распределению в пространстве масс и давлений. Этот и связанные с ним вопросы в дальнейшем будут подробно обсуждаться. Даже для скалярной материи, как мы увидим, у нас есть действительная двусмысленность при определении тензора энергии-импульса 𝑇μν. Эта трудность также возникает в электродинамике, когда мы пытаемся записать взаимодействие фотонов с заряженными векторными мезонами.

4.4. Подробные свойства плоских волн. Эффект Комптона

Мы можем изучить свойства гравитационных волн в отсутствии материи; вариируя лагранжиан, получим уравнение


μν,λ

-

2

μσ,ν

=

0,


(4.4.1)


которое аналогично уравнению Максвелла в пустом пространстве. Если мы используем решения типа плоских волн


μν

=

𝑒

μν

exp(𝑖𝑞⋅𝑥)

,


(4.4.2)


то уравнение принимает следующий вид


𝑞²

𝑒

μν

-

𝑞

ν

𝑞

σ

𝑒

σμ

-

𝑞

μ

𝑞

σ

𝑒

σν

=

0.


(4.4.3)


Мы интересуемся случаями, когда 𝑞²≠0 и 𝑞²=0. Если 𝑞²≠0, мы можем разделить на 𝑞² и переставить члены уравнения так, что


𝑒

μν

=

𝑞

ν


1

𝑞²

𝑞

σ

𝑒

σμ

+

𝑞

μ


1

𝑞²

𝑞

σ

𝑒

σν

.


(4.4.4)


Такое разделение вектора на два слагаемых в точности выражает вектор 𝑒μν как симметризованный градиент


𝑒

μν

=

χ

μ,ν

+

χ

ν,μ

.


(4.4.5)


Ранее мы обсудили, как калибровочная инвариантность гравитационного поля означает, что добавление члена такого вида не приводит к отличиям в физике явления. Отсюда следует, что всегда можно добавить некоторый член к 𝑒μν так, что 𝑒μν=0. Мы будем называть такие волны с 𝑞²≠0 ”калибровочными волнами”; эти волны не связаны ни с какими физическими эффектами и могут быть всегда устранены калибровочным преобразованием.

Если 𝑞²=0, то из уравнения (4.3.3) следует, что


𝑞

σ

𝑒

μν

=

0.


(4.4.6)


Это так называемые свободные волны должны удовлетворять лоренцеву калибровочному условию. Дело не только в выборе


μν

=

0


(4.4.7)


для удобства в случаях, в которых волна не свободна. Этот факт имеет свой электромагнитный аналог, для фотонов величина 𝑞μ𝑒μ должна быть равна нулю.

Мы можем вывести действительный вид тензора поляризации 𝑒μν в системе координат такой, что 4-вектор импульса равен


𝑞

μ

=

(ω,ω,0,0)

.


(4.4.8)


Если мы выбираем


𝑒'

μν

=

𝑒

μν

+

𝑞

μ

χ

ν

+

𝑞

ν

χ

μ


(4.4.9)


и требуем, что 𝑒'μν должна иметь компоненты только в трансверсальном направлении, мы получаем систему уравнений, которая может быть разрешена и получен ответ


𝑒'₁₁

=-

𝑒'₂₂

=

1

√2

,

𝑒'₁₂

=

𝑒'₂₁

=

1

√2

.


(4.4.10)


Для того, чтобы получить соотношения (4.4.10), заметим, что из уравнения (4.4.6) следует, что 𝑒μ4=-𝑒μ3, так что только компоненты с индексами 4, 1 и 2 являются независимыми. Компоненты с индексом 4 могут быть удалены, если требуется, с помощью преобразования (4.4.9). Например, 𝑒'₁₄=𝑒₁₄+ωχ₁, тогда выберем χ₁=-𝑒₁₄/ω, χ₂=-𝑒₂₄/ω. Тогда 𝑒'₄₃=𝑒₄₃+ωχ₄-ωχ₃, выберем χ₃-χ₄=-𝑒₃₄/ω тогда 𝑒'₄₃=𝑒'₄₃=𝑒'₄₄=𝑒'₃₃=0. Выбирая χ₄=-𝑒₄₄/2ω, сделаем следующую величину равной нулю 𝑒'₄₄=𝑒₄₄+2ωχ₄=0. Тогда, так как величина 𝑒'₄₄ также равна нулю, то след 𝑒'σσ равен нулю, следовательно, равны нулю также и 𝑒'₃₃ и 𝑒'₁₁+𝑒'₂₂ Поэтому остались ненулевыми среди величин 𝑒'μν только компоненты с индексами μ,ν = 1 или 2 и для них 𝑒'₁₁=-𝑒'₂₂ Имеется только две линейно независимые нормализованные комбинации (4.4.10).

Рис. 4.3.

Амплитуда для комптоновского рассеяния гравитона частицей массы 𝑚 соответствует диаграммам, изображённым на рис. 4.3. Поляризации гравитона представляются тензором 𝑒μν; для скалярной массы компоненты импульса в каждой вершине -¹𝑝μ, (¹𝑝ν+¹𝑞ν) = (²𝑝ν+²𝑞ν) и ²𝑝μ. На языке этих величин мы имеем для первой диаграммы


4λ²

²

𝑒

μν

²𝑝

μ

(

²𝑝

ν

+

²𝑞

ν

)-

1

2

𝑚²η

μν


1

(¹𝑝+¹𝑞)²-𝑚²

×


×

¹

𝑒

αβ

¹𝑝

α

(

²𝑝

β

+

²𝑞

β

)-

1

2

𝑚²η

αβ

.


(4.4.11)


Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии