Читаем Feynmann 6a полностью

есть четырехвектор. То, что мы называли скалярным и вектор­ным потенциалами, оказывается только разными частями от од­ной и той же физической величины. Они неотделимы друг от друга. А если это так, то релятивистская инвариантность мира очевидна. Вектор Аm мы называем четырехмерным потенциалом (4-потенциалом).

В четырехмерных обозначениях (25.21) приобретает очень простой вид:


(25.22)

Физика этого уравнения та же, что и уравнений Максвелла. Но есть своя прелесть в том, что можно переписывать их в столь элегантной форме. Впрочем, эта красивая форма содержит и кое-что более значительное — из нее непосредственно видна ин­вариантность электродинамики относительно преобразований Лоренца.

Напомним, что уравнение (25.21) можно получить из урав­нений Максвелла только тогда, когда наложено дополнитель­ное условие градиентной инвариантности:


(25.23)

что означает просто СmAm =0, т. е. условие градиентной инвари­антности говорит, что дивергенция четырехмерного вектора Аm равна нулю. Это требование носит название условия Лоренца. Такая форма его записи очень удобна, ибо она инвариантна, а поэтому уравнения Максвелла во всех системах отсчета сохра­няют вид (25.22).

§ 5. Четырехмерный потенциал движущегося заряда


Теперь выпишем законы преобразования, выражающие j и А в движущейся системе через j и А в неподвижной, хотя неяв­но мы уже говорили о них. Поскольку Аm = (j, А) является четырехвектором, это уравнение должно выглядеть подобно (25.1), за исключением того, что t

нужно заменить на j, а x — на А. Таким образом,

(25.24)

При этом предполагается, что штрихованная система координат движется по отношению к нештрихованной со скоростью v в направлении оси х.

Рассмотрим один пример плодотворности идеи 4-потенциала. Чему равны векторный и скалярный потенциалы заряда q, движущегося со скоростью v в направлении оси х! Задача очень упрощается в системе координат, движущейся вместе с заря­дом, ибо в этой системе заряд покоится. Пусть заряд находится в начале координат системы S', как это показано на фиг. 25.2.



Фиг. 23.2. Система отсчета S' движется со ско­ростью v

(в направлении оси х) по отношению к системе S.

Заряд, покоящийся в начале системы координат S', нахо­дится в системе S в точке x=vt. Потенциалы в точке Р могут быть найдены для любой системы отсчета.

Скалярный потенциал в движущейся системе задается выраже­нием


(25.25)

причем r' — расстояние от заряда q до точки в движущейся си­стеме, где производится измерение поля. Векторный же потен­циал А', разумеется, равен нулю.

Теперь без особых хитростей можно найти потенциалы j и А в неподвижной системе координат. Соотношениями, обрат­ными к уравнениям (25.24), будут

(25.26)

Используя далее выражение для j'[см. (25.25)] и равенство А'=0, получаем



Эта формула дает нам скалярный потенциал j, который мы уви­дели бы в системе S, но он, к сожалению, записан через коорди­наты штрихованной системы. Впрочем, это дело легко попра­вимо; с помощью (25.1) можно выразить t', х', у', z' через t, x,

у, z и получить

(25.27)

Повторяя ту же процедуру для вектора А, вы можете показать,

что

А = vj. (25.28)

Это те же самые формулы, которые мы вывели в гл. 21, но там они были получены другим методом.

§ 6. Инвариантность уравнений электродинамики


Итак, потенциалы j.и А, оказывается, образуют в совокупно­сти четырехвектор, который мы обозначили через Аm , а вол­новое уравнение (полное уравнение, выражающее Аm через jm) можно записать в виде (25.22). Это уравнение вместе с сохране­нием заряда (25.19) составляют фундаментальный закон электромагнитного поля:

(25.29)

Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука