Читаем Feynmann 6a полностью

Нам, однако, известно, что заряд двигался с постоянной скоростью по прямой линии, поэтому естественно, что поведение в точке Р' непосредственно связано с переменным положением заряда. Фактически, если мы добавим предположение, что потен­циалы зависят только от положения и скорости в запаздывающий момент, тогда уравнение (26.1) будет представлять собой полную формулу для потенциалов заряда, движущегося любым обра­зом. Вот как все это работает. Пусть у вас имеется заряд, дви­жущийся каким-то произвольным образом, скажем, по траекто­рии, изображенной на фиг. 26.2, и вы пытаетесь найти потен­циал в точке (х, у, z). Прежде всего вы находите запаздывающее положение Р' и скорость v' в этой точке. Вообразите затем, что заряд сохраняет свое движение с этой скоростью на весь период запаздывания (t'-t), так что он появился бы затем в воображае­мом положении Рпр, которое мы будем называть «проекци­онным», причем двигаясь с той же скоростью v'. (На самом деле он, конечно, не делает этого; в момент

t он находится в точке Р.) Тогда потенциалы в точке (х, у, z) будут как раз такими, кото­рые дали бы уравнения (26.1) для воображаемого заряда в про­екционном положении Рпр. Мы хотим здесь сказать, что, по­скольку потенциалы зависят только от того, что делает заряд в запаздывающий момент, они будут одинаковы, независимо от того, продолжает ли заряд свое движение с постоянной скоро­стью или изменяет его после момента t', т. е. после того, как по­тенциалы, которые возникнут в момент t в точке (х, у, z), уже определены.

Вы понимаете, конечно, что в тот момент, когда получены формулы для потенциалов произвольно движущегося заряда, мы имеем полную электродинамику; из принципа суперпози­ции мы можем получить потенциалы для любого распределения зарядов.



Фиг. 26.2. Движение за­ряда по произвольной тра­ектории.

Потенциалы в точке (х, у, z) в момент t определяются положением Р' и скоростью v'

в за­паздывающий момент t'— t-r' /с. Их удобно выражать через коор­динаты относительно «проек­ционного» положения Pпр (ис­тинным положением в момент t является точка
Р).

Следовательно, все явления электродинамики можно вывести либо из уравнений Максвелла, либо из следующего ряда замечаний. (Запомните их на случай, если вы вдруг очу­титесь на необитаемом острове. Исходя из них, можно восста­новить все. Преобразования Лоренца вы, конечно, помните. Не забывайте их ни на необитаемом острове, ни в каком-либо другом месте.)

Во-первых, Аmчетырехвектор. Во-вторых, кулонов по­тенциал любого покоящегося заряда равен q/4pe0r. В-тре­тьих, потенциал, созданный зарядом, движущимся произволь­ным образом, зависит только от положения в запаздывающий момент времени. Из этих трех фактов вы можете получить все. Из того, что Аm ~ четырехвектор, мы преобразованием кулонова потенциала, который известен, получим потенциал за­ряда, движущегося с постоянной скоростью. Затем из послед­него утверждения, что потенциал зависит только от скорости в запаздывающий момент, мы, используя проекционное положе­ние, можем их найти. Правда, это не очень-то удобный способ рассмотрения, но интересно убедиться в том, что законы физики можно сформулировать множеством самых различных способов.

Иногда кое-кто безответственно заявляет, что вся электро­динамика может быть получена только из преобразований Ло­ренца и закона Кулона. Это, конечно, совершенно неверно. Мы прежде всего должны предположить, что у нас имеются скаляр­ный и векторный потенциалы, которые в совокупности образуют четырехвектор. Это говорит нам, как преобразуются потен­циалы. Затем, откуда нам известно, что необходимо учитывать только эффект в запаздывающий момент? Или, еще лучше, по­чему потенциал зависит только от положения и скорости и не зависит, например, от ускорения? Ведь поля Е и В зависят все-таки и от ускорения. Если вы попытаетесь применить те же рассуждения к ним, то будете вынуждены признать, что они за­висят только от положения и скорости в запаздывающий мо­мент. Но тогда поле ускоряющегося заряда было бы таким же, как и поле от заряда в проекционном положении, а это неверно. Поля зависят не только от положения и скорости вдоль траек­тории, но и от ускорения. Так что в «великом» утверждении, что все можно получить из преобразования Лоренца, содержится еще несколько неявных дополнительных предположений. (Всегда, когда вы слышите подобное эффектное утверждение, что нечто большое можно построить на основе малого числа предположений,— ищите ошибку. Обычно неявно принимается довольно много такого, что оказывается далеко не очевидным, " если посмотреть внимательнее.)

Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука