Читаем Feynmann 6a полностью

В простоте уравнений Максвелла в этих частных обозначе­ниях никакого чуда нет. Обозначения специально были приду­маны именно для них. Самая интересная с физической точки зрения вещь состоит в том, что любой физический закон (будь то распространение мезонных волн, или поведение нейтрино в b-распаде, или что-то другое) должен иметь ту же самую инвариантность относительно тех же преобразований. Так что если ваш звездолет движется с постоянной скоростью, то все законы природы вместе преобразуются так, что никаких новых явлений не возникает. Именно благодаря тому, что принцип относитель­ности является законом природы, уравнения нашего мира в четырехмерных обозначениях должны выглядеть гораздо проще.


*Вас может удивить, почему же мы не пользуемся реакцией


Или даже


для которой, несомненно, требуется меньшая энергия? Все дело в прин­ципе, называемом сохранением барионного заряда, согласно которому вели­чина, равная числу протонов минус число антипротонов, не может изме­ниться. В левой стороне нашей реакции эта величина равна 2. Следова­тельно, если мы хотим справа иметь антипротон, то ему должны сопут­ствовать еще три протона (или других бариона).

* В английском оригинале «unworldliness». Прим. ред.

Глава 26

ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ ПОЛЕЙ

§ 1. Четырехмерный потенциал дви­жущегося заряда

§ 2. Поля точечного заряда, движу­щегося с посто­янной скоростью

§ 3. Релятивистское преобразование полей

§ 4. Уравнение движения в релятивистских обозначениях

В этой главе c=1

Повторить: гл. 20 «Решение урав­нений Максвелла в пустом пространстве»

§ 1. Четырехмерный потенциал движущегося заряда

В предыдущей главе мы видели, что потен­циал Am =(j, А) является четырехвектором. Его временной компонентой служит скалярный по­тенциал j, а тремя пространственными компо­нентами— векторный потенциал А. Используя преобразования Лоренца, мы нашли также потенциал частицы, движущейся прямолинейно с постоянной скоростью. (В гл. 21 то же самое было сделано несколько иным методом.) Для точечного заряда, координаты которого в мо­мент t равны (vt, 0, 0), потенциалы в точке (х, у, z) имеют вид

(26.1)

Уравнения (26.1) дают потенциалы в точке х, у, z

в момент t, возникающие от движуще­гося заряда, «истинное» положение которого (имеется в виду положение в момент времени t) x=vt. Заметьте, что в уравнение входят координаты (x-vt), у и z, которые являются коор­динатами относительно переменного положения Р движущегося заряда (фиг. 26.1). Но, как вы знаете, истинное влияние распространяется на самом деле со скоростью с, так что поле в точке определяется на самом деле запаздывающим положением заряда Р', координата х которого равна vt
' (где t'=t-r'/с — «запаздывающее» время».)


Фиг. 26.1. Определение полей в точке P от заряда q, движущегося вдоль оси x с постоянной скоростью v. (Поле в точке (x,

y, z) в «настоящий момент» можно выразить как через «истинное» положение P так и через «запаздывающее» положение P’ (т. е. положение в момент t’=t-r’/c).

Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука