Читаем Feynmann 6a полностью

§ 2. Поля точечного заряда, движущегося с постоянной скоростью

Итак, мы нашли потенциалы точечного заряда, движущегося с постоянной скоростью. Для практических целей нам нужно найти поля. Равномерно движущиеся заряды попадаются бук­вально на каждом шагу, скажем проходящие через камеру Вильсона космические лучи или даже медленно движущиеся электроны в проводнике. Так что давайте хотя бы посмотрим, как выглядят эти поля для любых скоростей заряда, даже для скоростей, близких к скорости света, но предположим при этом, что ускорение вообще отсутствует. Это очень интересный вопрос.

Поля мы будем находить по обычным правилам, исходя из потенциалов


Возьмем сначала Ez:


Но компонента Az равна нулю, а дифференцирование выра­жения (26.1) для j дает



(26.2)

Аналогичная процедура для Еу приводит к


(26.3)

Немного больше работы с x-компонентой. Производная от j более сложна, да и Ах не равна нулю. Давайте сначала вычислим —дj/дх:


(26.4)


А затем продифференцируем Ах по t:

(26.5)

И, наконец, складывая их, получаем



(26.6)

Бросим на минуту заниматься полем Е, а сначала найдем В. Для его z-компоненты мы имеем

Но, поскольку Аy равна нулю, у нас остается только одна производная. Заметьте, однако, что Ах просто равна vj, а производная (d/dy)vj равна —vEy

. Так что



(26.7)

Аналогично,


или


(26.8)

Наконец, компонента Вх равна нулю, поскольку равны нулю и Ау и Аг. Таким образом, магнитное поле можно запи­сать в виде


(26.9)

Теперь посмотрим, как выглядят наши поля. Мы попытаемся нарисовать картину поля вокруг положения заряда в настоящий момент. Конечно, влияние заряда в каком-то смысле происхо­дит из запаздывающего положения, но, поскольку мы имеем дело со строго заданным движением, запаздывающее положение однозначно определяется положением в настоящий момент. При постоянной скорости заряда поля лучше связывать с теку­щими координатами, ибо компоненты поля в точке х, у, z за­висят только от

-vt), у и z, которые являются компонентами вектора перемещения rp из постоянного положения заряда в точку (х, у, z) (фиг. 26.3).


Фиг. 26.3. Электрическое поле заряда, движущегося с постоянной скоростью, направ­лено по радиусу от истинного положения заряда.

Рассмотрим сначала точки, для которых z= 0. Поле Е в этих точках имеет только х- и y-компоненты. Из уравнений (26.3) и (26.6) видно, что отношение этих компонент как раз равно отно­шению х- и y-компонент вектора перемещения. Это означает, что направление Е совпадает с направлением rp, как это пока­зано на фиг. 26.3. Тот же результат остается справедливым и для трех измерений, поскольку Ez пропорционально z. Короче говоря, электрическое поле заряда радиально и силовые линии расходятся от заряда так же, как и в стационарном случае. Конечно, вследствие наличия дополнительного фактора (1-v2) поле не будет тем же самым, что в стационарном случае. Но здесь мы можем увидеть нечто очень интересное. Дело обстоит так, как будто вы пишете закон Кулона в особой системе коорди­нат, «сжатой» вдоль оси x множителем Ц(1-v2) Если вы сделаете это, то силовые линии впереди и позади заряда разойдутся, а по бокам сгустятся (фиг. 26.4).

Если мы связываем обычным образом напряженность поля Е с плотностью силовых линий, то видим, что поле впереди и по­зади заряда ослабевает, но зато по бокам становится сильнее, т. е. как раз то, о чем говорит нам уравнение. Когда вы изме­ряете напряженность поля под прямыми углами к линии дви­жения, т. е. при (x-vt) = 0, расстояние от заряда будет равно y2+z2, а полная напряженность Ц(E2

x+E2y) в этих точках равна



(26.10)

Она, как и в случае кулонова поля, пропорциональна квад­рату расстояния, но еще усиливается постоянным множителем 1/Ц(1-v2), который всегда больше единицы. Таким образом, по бокам движущегося заряда электрическое поле сильнее, чем это следует из закона Кулона. Фактически увеличение по срав­нению с кулоновым потенциалом равно отношению энергии частицы к ее массе покоя.


Впереди заряда (или позади него) у и z равны нулю, а поэ­тому

(26.11)

Снова поле обратно пропорционально расстоянию от заряда, но теперь оно зарезается множителем (1-v2), что согласуется с картиной силовых линий. Если v/c мало, то v2/c2 еще меньше, и действие (1-v2) почти незаметно, поэтому мы снова возвра­щаемся к закону Кулона. Но если частица движется со скоро­стью, близкой к скорости света, то поле перед частицей сильно уменьшается, а поле сбоку чудовищно возрастает.

Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука