Читаем Feynmann 9 полностью

Но это как раз коэффициенты разложения в ряд е+2ar. Функ­ция g оказывается быстро растущей экспонентой. Даже после умножения на е-ar получающаяся функция f(r) [см. (17.14)] будет при больших r меняться как еar. Мы нашли математиче­ское решение, но оно не является физическим. Оно представляет случай, когда электрону менее всего вероятно очутиться вблизи протона! Чаще всего он вам повстречается на очень больших расстояниях р. А волновая функция для связанного электрона должна при больших r стремиться к нулю.

Придется подумать, нельзя ли как-нибудь обмануть решение. Оказывается, можно. Посмотрите! Если бы, по счастью, оказа­лось, что a=1/n, где nлюбое целое число, то уравнение (17.22) привело бы к a

n+1=0. И все высшие члены обратились бы тоже в нуль. Вышел бы не бесконечный ряд, а конечный многочлен. Любой многочлен растет медленнее, чем еar, поэтому множитель е-a наверняка забьет его при больших r, и функ­ция f при больших r будет стремиться к нулю. Единственные решения для связанных состояний это те, для которых a=1/n, где n=1, 2, 3, 4 и т. д.

Оглядываясь на уравнение (17.16), мы видим, что у сфериче­ски симметричного волнового уравнения могут существовать решения для связанных состояний лишь при энергиях

Допустимы только те энергии, которые составляют именно такую часть ридберга ЕR=me4/2h2, т. е. энергия n

-го уровня равна

Кстати, ничего мистического в отрицательных энергиях нет. Они отрицательны просто потому, что когда мы решили писать V= -е2/r, то тем самым в качестве нуля энергии выбрали энергию электрона, расположенного вдалеке от протона. Когда он ближе, то его энергия меньше, т. е. ниже нуля. Энергия ни­же всего (самая отрицательная) при n=1 и возрастает к нулю с ростом п.

Еще до открытия квантовой механики экспериментальное изучение спектра водорода показало, что уровни энергии описы­ваются формулой (17.24), где ЕR, как это следует из измерений, равно примерно 13,6 зв. Затем Бор придумал модель, которая привела к тому же уравнению (17.24) и предсказала, что ER должно равняться me4

/2h2. Первым большим успехом теории Шредингера явилось то, что она смогла воспроизвести этот результат прямо из основного уравнения движения электрона.

Теперь, когда мы рассчитали наш первый атом, давайте рас­смотрим свойства полученного нами решения. Объединим все выделившиеся по дороге факторы и выпишем окончательный вид решения:

где

и

Пока нас интересует главным образом относительная вероят­ность обнаружить электрон в том или ином месте, можно в ка­честве а1 выбирать любое число. Возьмем, например, а1=1. (Обычно выбирают а1 так, чтобы волновая функция была «нор­мирована», т. е. чтобы полная вероятность обнаружить элек­трон где бы то ни было в атоме была равна единице. Мы в этом сейчас не нуждаемся.)

В низшем энергетическом состоянии n=1 и

Если атом водорода находится в своем основном (наиболее низ­ком энергетическом) состоянии, то амплитуда того, что элект­рон будет обнаружен в каком-то месте, экспоненциально падает с расстоянием от протона. Вероятнее всего встретить его вплотную близ протона. Характерное расстояние, на котором он встречается, составляет около одного r, или одного боровского радиуса r

B.

Подстановка n=2 дает следующий более высокий уровень. В волновую функцию этого состояния входят два слагаемых. Она равна

Волновая функция для следующего уровня равна

Эти три волновые функции начерчены на фиг. 17.2.

Фиг. 17.2. Волновые функции трех первых состоя­ний атома водорода с l=0. Масштабы выбраны так, чтобы полные вероятности совпадали.

Общая тен­денция уже видна. Все волновые функции при больших r, поко­лебавшись несколько раз, приближаются к нулю. И действи­тельно, число «изгибов» у yn как раз равно n, или, если угодно, число пересечений оси абсцисс — число нулей — равно n-1.

§ 3. Состояния с угловой зависимостью

Мы нашли, что в состояниях, описываемых волновой функ­цией yn(r), амплитуда вероятности обнаружить электрон сфе­рически симметрична; она зависит только от r — расстояния до протона. Момент количества движения таких состояний равен нулю. Теперь займемся состояниями, у которых какой-то момент количества движения имеется.

Можно было бы, конечно, просто исследовать чисто матема­тическую задачу отыскания функций от r, q и j, удовлетворяю­щих дифференциальному уравнению (17.7), добавив только физическое условие, что единственно приемлемые для нас функции — это такие, которые при больших r стремятся к нулю. Так почти всегда и поступают. Но мы попробуем несколько сократить наш путь и воспользоваться тем, что мы уже знаем, именно тем, что нам известно, как амплитуды зависят от про­странственных углов.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука