Читаем Feynmann 9 полностью

Функции Yl,m(q, j) называют сферическими гармониками, a a — просто численный множитель, который зависит от того, как определено Yl,m. При обычном определении

В этих обозначениях волновые функции водорода записываются так:

Угловые функции Yl,m (q,j) важны не только во многих квантовомеханических задачах, но и во многих областях клас­сической физики, в которых встречается оператор С2, например в электромагнетизме. В качестве другого примера их примене­ния в квантовой механике рассмотрим распад возбужденного состояния Ne20 (о котором говорилось в предыдущей главе), которое испускает a-частицу и превращается в О16:

Neao'^o^-fHe4.

Допустим, что возбужденное состояние имеет спин l

(обяза­тельно целый), а z-компонента момента количества движения есть т. Спросим вот о чем: если даны l и т, то какова амплитуда того, что a-частица вылетит в направлении, составляющем с осью z угол q и с плоскостью xz угол j (фиг. 17.4)?

Фиг. 17.4. Распад возбужденного состояния Ne20.

Решить эту задачу нам поможет следующее наблюдение. Распад, в котором a-частица вылетает прямо вдоль оси z, должен происходить из состояния с m=0. Это потому, что у самих О16 и a-частицы спин равен нулю, а за счет движения вдоль оси z момента вокруг этой оси не создашь. Обозначим эту амплитуду а (на единицу телесного угла). Тогда, чтобы найти амплитуду распада под произвольным углом (см. фиг. 17.4), остается только узнать, с какой амплитудой данное начальное состояние будет обладать нулевым моментом относительно направления распада. Амплитуда того, что распад будет в направлении (q, j), тогда будет равна произведению а на амплитуду того, что состояние |l, т> относительно оси z

окажется в состоянии |l, 0> отно­сительно z' (направления распада). Эта последняя амплитуда как раз и есть то, что мы писали в (17.31). Вероятность увидеть a-частицу под углом (q, j), стало быть, равна

Для примера рассмотрим начальное состояние с l=1 и различными т. Из табл. 15.2 (стр. 129) мы знаем все нужные амплитуды:

Это и есть три возможные амплитуды угловых распределений, в зависимости от того, какое т у первоначального ядра.

Такие амплитуды, как (17.36), встречаются так часто и так важны, что им дали несколько названий. Если амплитуда углового распределения пропорциональна любой из этих трех функ­ций или любой их линейной комбинации, то мы говорим: «орби­тальный момент системы равен единице». Или можно сказать: «Ne20* испускает р-волну». Или говорят: «a-частица испускается в состоянии с l=1». Выражений так много, что даже стоит соста­вить словарик. Если вы хотите понимать разговор физиков, то вам просто нужно выучить их язык. В табл. 17.1 приведен сло­варь орбитальных моментов количества движения.

Таблица 17.1 · СЛОВАРИК ОРБИТАЛЬНЫХ МОМЕНТОВ (l=j-ЦЕЛЫЕ ЧИСЛА)

Если орбитальный момент равен нулю, то повороты системы координат ничего не меняют и зависимости от угла нет: «зави­симость» от угла имеет вид постоянной, скажем 1. Это называют «s-состоянием». Есть только одно такое состояние, пока дело касается только зависимости от угла. Если орбитальный момент равен 1, то амплитуда зависимости от углов может быть одной из трех приведенных функций, смотря по тому, чему равно m, или их линейной комбинацией. Их называют «р-состояниями».

Таких состояний три. Если орбитальный момент равен 2, то подобных функций пять (см. таблицу). Любая их линейная ком­бинация называется «l=2»-амплитудой, или амплитудой «d

-волны». Теперь вы сразу догадаетесь, какая будет следующая буква. Что должно идти после s, p, d? Ну, конечно же, f, g, h и т. д. по алфавиту. Буквы эти ничего не значат. [Когда-то они что-то значили: «резкая» (sharp), «главная» (principal), «диффузная» (diffuse) и «фундаментальная» (fundamental) серии линий опти­ческого спектра атомов. Но это было тогда, когда еще не было известно, откуда эти серии линий берутся. После f особых названий уже не было, так что мы сейчас просто продолжаем g, h и т. д.]

Угловые функции в таблице проходят под несколькими име­нами и определяются порой с небольшими вариациями в числен­ных множителях, стоящих впереди. Иногда их называют «сфери­ческие гармоники» и обозначают Yl,m (q,q). Иногда их пишут Рlm (cosq)e

imj, а при m=0 просто Рl(cosq). Функции Pl(cosq) называются «полиномы Лежандра» по cosq, а функции Plm(cosq) именуют «присоединенными функциями Лежандра». Таблицы этих функций встречаются во многих книгах.

Обратите, кстати, внимание, что все функции с данным l имеют одну и ту же четность — при нечетных l они от инвер­сии меняют свой знак, при четных l — нет. Поэтому можно на­писать, что четность состояния с орбитальным моментом l рав­на (-1)l.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука