Читаем Feynmann 9 полностью

Атом водорода в том или ином состоянии — это частица с определенным «спином» j — квантовым числом полного мо­мента количества движения. Часть этого спина возникает от собственного спина электрона, другая — от движения электрона. Поскольку каждая из этих частей действует (в очень хорошем приближении) независимо, то мы по-прежнему будем игнориро­вать спиновую часть и учтем только «орбитальный» момент. Впрочем, это орбитальное движение в точности подобно спину. Скажем, если орбитальное квантовое число есть l, то z-компонента момента количества движения может быть l, l-1, l-2, . . ., -l. (Мы, как обычно, измеряем все в единицах h.) Кроме того, по-прежнему годятся все наши матрицы поворота и прочие известные свойства. (Начиная с этого места, мы действительно начнем пренебрегать спином электрона; говоря о «мо­менте количества движения», мы будем иметь в виду только орбитальную его часть.)

Поскольку поле с потенциалом V, в котором движется элект­рон, зависит только от r, а не от q и не от j, то гамильтониан симметричен относительно поворотов. Отсюда следует, что и момент количества движения и все его проекции сохраняются. Это не есть особое свойство кулонова потенциала e2/r; оно спра­ведливо при движении в любом «центральном поле» — поле, зависящем только от r.

Представим себе некоторое возможное состояние электрона; внутренняя угловая структура этого состояния будет опреде­ляться квантовым числом l. В зависимости от «ориентации» полного момента количества движения относительно оси z его проекция т на ось z может равняться одному из 2l+1 чисел между +l и -l. Пусть, например, m=1. С какой амплитудой электрон окажется на оси z

на расстоянии r от начала? С нуле­вой. Электрон на оси z не может иметь какого-либо орбиталь­ного момента относительно этой оси. Но пусть тогда m=0. Вот это другое дело; теперь уже может появиться не равная нулю амплитуда того, что электрон окажется на оси z на таком-то расстоянии от протона. Обозначим эту амплитуду Fl(r). Это — амплитуда того, что электрон будет обнаружен на расстоянии r по оси z, когда атом находится в состоянии | l, 0>, т. е. в состоянии с орбитальным моментом l и его z-компонентой m=0. А если нам известно Fl(r), то известно все. Теперь уже в лю­бом состоянии |l, m> мы можем узнать амплитуду ylm (r
) того, что электрон обнаружится в произвольном месте атома. Как мы это узнаем? А вот следите. Пусть у нас есть атом в состоянии | l, m>. Какова амплитуда того, что электрон обнару­жится под углом q, j и на расстоянии r от начала? Проведите новую ось z, скажем z', под этим углом (фиг. 17.3) и задайте вопрос: какова амплитуда того, что электрон окажется на новой оси z
на расстоянии r?

Фиг. 17.3. Точка (х, у, z) лежит на оси z' системы координат х' , у', z'.

Мы знаем, что он не сможет оказаться на оси z', если только m — его z'-компонента момента коли­чества движения — не равна нулю. Когда же m' =0, то амплитуда того, что электрон обнаружится на оси z', есть Fl(r). Значит, результат получится перемножением двух амплитуд. Первая это амплитуда того, что атом, находящийся в состоянии |l, т> относительно оси z, окажется в состоянии | l, m'=0> относи­тельно оси z' . Умножьте эту амплитуду на Fl

(r) и вы получите амплитуду yl,m(r) того, что электрон обнаружится в точке (r, q, j) относительно первоначальной системы осей.

Давайте все это распишем. Матрицы преобразования для поворотов мы уже вычислили. Чтобы перейти от системы х, у, z к системе х', у', z' (см. фиг. 17.3), можно сперва сделать поворот вокруг оси z на угол j, а потом сделать поворот вокруг новой оси у (оси у') на угол q. Совместный поворот выразится произведением

Rу(q)Rz(j).

Амплитуда того, что после поворота обнаружится состояние | l, m' =0>, есть

В итоге получаем

Орбитальное движение может обладать только целыми зна­чениями l. (Если электрон может быть обнаружен в любом месте, где r0, то имеется некоторая амплитуда того, что в этом на­правлении будет m=0. А состояния с m

=0 бывают только при целых спинах.) Матрицы поворота для l=1 приведены в табл.15.2 (стр. 129). Для больших l вы можете воспользоваться общими формулами, выведенными в гл. 16. Матрицы Rz(j) и Ry(q) написаны по отдельности, но как их комбинировать, вы знаете. В общем случае вы начнете с состояния | l, m> и подей­ствуете на него оператором Rz(j), получив новое состояние Rz(j)|l, т> (которое просто равно eimj|l, m>). Затем вы подействуете на это состояние оператором Ry(q) и получите состояние Ry(q) Rz(j) |l, m>. Умножение на <l, 0| даст вам матричный элемент (17.31).

Матричные элементы операции поворота — это алгебраиче­ские функции от q и j. Те частные виды функций, которые появляются в (17.31), возникают и во многих других задачах, связанных с волнами на сфере. Им присвоили особое имя. Правда, не у всех авторов обозначения одинаковы; чаще всего все же пишут

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука