Веревка с узелками с относительными длинами 3, 4 и 5 была полезным строительным инструментом
Именно изучив свойства треугольников, окружностей и углов, мы смогли впервые оценить размер нашей планеты. В 240 году до нашей эры Эратосфен, заведовавший Александрийской библиотекой в Египте, произвел соответствующие расчеты и вычислил длину окружности Земли.
В древних источниках (написанных, стоит сказать, спустя несколько веков после смерти нашего героя) говорится, что Эратосфен услышал, будто бы в один день в году полуденное солнце освещает всю шахту глубокого колодца в городе Сиена (ныне Асуан) на юге Египта. Это был день летнего солнцестояния, когда солнце оказывалось в самой северной точке, а следовательно, прямо над городами, стоящими на широте, которую мы сегодня называем Северным тропиком, или тропиком Рака. Эратосфен решил, что, имея эти данные и проведя измерения в Александрии, он сможет вычислить, какая доля окружности Земли приходится на идущую (примерно) с севера на юг линию между Александрией и Сиеной. В нужный день он с помощью отвеса установил шест перпендикулярно земле. В полдень он измерил угол, который образовался между тенью от шеста и вертикалью. Он составил 7,2°. Поскольку сфера покрывает 360°, Эратосфен понял, что расстояние от Сиены до Александрии должно равняться 7/360 от всей длины окружности. Он знал, что расстояние между городами составляет 5000 стадиев, и применил правило трех, чтобы вычислить длину окружности. У него получилось около 250 тысяч стадиев.
Мне хотелось бы сказать вам, в какой степени ответ Эратосфена соответствовал действительности. К несчастью, мы точно не знаем, как перевести стадии в современные единицы измерения, а потому не можем с уверенностью судить о точности его выводов. Но порядок величин точно верен. По текущим данным, окружность Земли на экваторе составляет около 40 тысяч километров. Эратосфен, вероятно, оценил ее в 40–46 тысяч километров. Неплохо для человека, которого прозвали “бетой”, или “второсортным”, поскольку, хотя он и добивался успехов во многих сферах, он никогда ни в чем не был первым.
И этим наш король второго места не ограничился. Он понял, что ось, относительно которой вращается Земля, что приводит к смене дня и ночи, не совсем параллельна оси ее орбиты вокруг Солнца. Поэтому на Земле и сменяются сезоны: поскольку ось наклонена, в определенные периоды в процессе обращения планеты вокруг Солнца северное полушарие получает больше света, чем шесть месяцев спустя. Изучив геометрию теней, чтобы оценить, каким может быть угол наклона оси, Эратосфен пришел к выводу, что он составляет 11/83 × 180°, или 23,85°. На самом деле – около 23,4°. Опять же, неплохо.
Невозможно продолжать разговор о треугольниках, не познакомившись с этой ужасной троицей: синусом, косинусом и тангенсом. Мало кто из нас хорошо понимает, что скрывается за этими словами. Если не вдаваться в детали, это числа, связанные с длинами сторон прямоугольного треугольника. Сегодня мы чаще всего встречаемся с ними, нажимая на кнопки калькулятора. Еще совсем недавно они записывались в таблицах, которые собирались в брошюры: мой первый учитель геометрии в начале каждого урока раздавал ученикам такие брошюры – помню, обложка у них была красно-белая. Я также помню, что во всех этих синусах, косинусах и тангенсах лично я видел лишь инструмент решения бесполезных математических задач.
В чем вообще их смысл? Неясно, когда эти термины вошли в обиход, но вероятно, что вариации величин, которые они представляют, использовались многие тысячи лет. Помните египетского писца Ахмеса? В его папирусе содержится вопрос: “Если высота пирамиды составляет 250 локтей, а длина ее основания равна 360 локтям, каков ее секед?” Из решения, которое он предлагает, задействуя длины сторон прямоугольных треугольников, становится понятно, что “секед” соответствует нашему котангенсу, то есть противоположности тангенса. В этом случае это противоположность тангенса угла между основанием и гранью пирамиды. Впрочем, мы забежали вперед. Начнем с синуса.
Как синус получил свое название
Он получил свое название по ошибке. Все началось с описания прямой вертикальной линии, показанной на рисунке выше. Она называется хордой дуги, а дуга – это отрезок окружности, по форме напоминающий лук. На санскрите хорда обозначается тем же словом, что и тетива:
Откуда берутся синусы, косинусы и тангенсы
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии / Культурология