Рассказывая о Добеши, акцент обычно делают на том, как ей нравится работать в саду. Возможно, это объясняется тем, что большинству из нас просто не под силу оценить сложную математику ее изобретения. Тем не менее мы можем хотя бы взглянуть на колебания, называемые вейвлетами (от англ.
Вейвлеты позволяют нам математически представить всплеск – очень короткий изолированный сигнал, напоминающий пик на кардиомониторе. Это гораздо сложнее, чем кажется. Когда мы воссоздаем сигналы в качестве суммы синусоидальных колебаний, у них почти всегда оказывается “длинный хвост”, потому что резкая остановка сигнала возможна только при использовании чрезвычайно высокочастотных синусоидальных волн. Это сильно нас ограничивает, поскольку к сигналу добавляется огромный объем данных – часто даже больше, чем содержится в оригинале.
Вейвлеты Добеши – альтернатива системе преобразований Фурье. Они занимают пространство с бесконечным числом измерений (это не так сложно, как кажется; для их применения нужно просто обратиться к силе бесконечных рядов, с которыми мы встречались в главе о математическом анализе). Добеши нашла способ создавать начальный, или материнский, сигнал, у которого вообще нет хвоста: такой сигнал сводится к нулю на очень малом расстоянии от пика. При корректировке сигнала-матери у него появляются дочери, внучки, правнучки и так далее. Они дают нам все больше подробностей, и их можно сложить, чтобы создать чрезвычайно короткие, информационно насыщенные всплески, которые кодируются в очень маленькие файлы.
Добеши совершила свой прорыв в 1986 году, и это сразу же оказало влияние на обработку данных. Особенно широко вейвлеты применяются в сфере медицинской визуализации. При эндоскопических, ультразвуковых, рентгеновских, МРТ- и КТ-исследованиях вейвлеты упрощают обработку и передачу снимков без потери жизненно важных – возможно, даже спасающих жизни – деталей. Но поистине мир, пожалуй, изменило применение вейвлетов в базах данных отпечатков пальцев.
Пионером применения отпечатков пальцев в качестве источника информации для правоохранительных органов был Фрэнсис Гальтон. В 1888 году в письме в журнал
Ценность отпечатков пальцев пропорциональна их количеству в вашей картотеке и обратно пропорциональна времени, которое необходимо, чтобы найти их и сравнить между собой. Но чем больше в картотеке записей, тем дольше искать нужную. Сжатие отпечатков пальцев с помощью преобразований Фурье не помогло решить этот парадокс, поскольку при успешном сжатии данных терялось слишком много деталей. Но затем появились вейвлеты, и все изменилось. Сегодня Информационная служба криминальной юстиции ФБР хранит отпечатки пальцев около 150 миллионов человек, применяя для их шифрования вейвлеты Добеши.
Как мы увидели, у статистиков немало способов отправить человека за решетку – или снять с него бремя вины. Но, пожалуй, самый незаурядный из них – закон Бенфорда. На первый взгляд он кажется совершенно нелепым. Его суть такова: в любой таблице чисел, описывающих естественную активность – включая деятельность человека, – наблюдается особая закономерность: цифра 1 встречается чаще всего, за ней идет 2, потом 3 и так далее до цифры 9, которая встречается лишь в 4,6 % случаев.
Первым это заметил астроном Саймон Ньюком, который изучил то, как его современники в XIX веке пользовались брошюрами с логарифмическими таблицами[200]
. Он заметил, что первые страницы брошюры, на которых люди искали числа, начинающиеся с единицы, грязнее остальных. Далее страницы постепенно становились все чище. Таблицы с числами, начинающимися на девятку, почти не использовались. Ньюком пришел к выводу, что большинство его коллег работало с задачами, в которых малые цифры встречались чаще больших. Как выяснилось, астрономия – лишь крошечная часть мира, где наблюдается такая закономерность.Теперь эта универсальная истина носит имя физика и инженера Фрэнка Бенфорда. В 1889 году, когда Бенфорду было всего шесть лет, произошла катастрофа на дамбе Саут-Форк в его родном городе Джонстауне в Пенсильвании. Потоки воды устремились на Джонстаун со скоростью 40 миль в час, и в результате погибло 2200 человек. Сам Бенфорд сломал руку, но выжил: всю ночь он цеплялся здоровой рукой за корягу, плавающую в воде[201]
.Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии / Культурология