Вы видите результат анализа, полученного данным методом, каждый раз, когда ищете что-нибудь в поисковике. То же самое происходит, если вам вешают лапшу на уши в новостях на сайтах социальных сетей, рекомендуют «вещи, которые вы можете захотеть купить» на коммерческом ресурсе, или предлагают общаться «с людьми, которые могут вас заинтересовать» на профессиональном сайте. Газеты тоже занимаются чем-то подобным, составляя статью в стиле, используемом людьми, для которых она предназначена, и затем сравнивая, насколько эта статья похожа на другие. Все сервисы, предоставляющие услуги по просмотру видео, построены на прогнозировании и отборе роликов, которые могут понравиться подписчику, и на контенте, похожем на его любимые ролики. Недавно компания Netflix сообщила в своем блоге, что факторы, принимаемые во внимание при рекомендации фильмов и телешоу, включают в себя не только определенный тип контента (например, «Вы смотрите передачи по научной фантастике, вам может понравиться и другая такая же передача»), но также регион, в котором живет зритель («Вы смотрите кулинарное шоу, но вы находитесь в Индии, так что вам могут понравиться болливудские фильмы»). Подсчитано, что 80 % роликов, просмотренных на сайте Netflix, – это результат рекомендаций пользователям. Как мы видели в главе 4, соединение таких связей с правильным анализом могут породить открытие.[29]
Метод 2 предполагает случайную выборку. В музыкальном магазине вы подходите к коробке и вытаскиваете оттуда сразу несколько дисков. Как и при любой случайной выборке, вы не можете узнать, насколько близки выбранные диски к разделу музыки, который вам нужен. Даже если вы сразу наткнетесь на популярную музыку, вы не сможете это понять. Работая с результатами анализа связей, мы уже не должны полагаться на случайные догадки о том, с чего начать поиск.
Если бы Фою были доступны эти технологические преимущества, мы могли бы представить два метода на примере следующих графиков. Метод 1 требует в худшем случае линейного времени, а на метод 2 уйдет постоянное количество времени. Метод 2 – линейный (в худшем случае), так как Фою придется теоретически прослушать все песни в мире, прежде чем он найдет ту, которая ему нужна. Метод 1 – постоянный, потому что независимо от количества песен в мире Фой начинает свой путь с наиболее популярных произведений.
Чтобы увидеть, насколько универсален прикладной метод решения задачи Фоя, давайте рассмотрим пример из абсолютно другой сферы – политики. Вплоть до XIX века американская политическая система выглядела совершенно иначе. Во время выборов улицы были заполнены мужчинами (женщины не обладали правом голоса до 1920 года), которые проводили демонстрации, выпивали – и голосовали. Но позже голосование стало менее публичным актом, и политикам пришлось самим искать себе избирателей. В 1890 году Уильям Дженнингс Брайан придумал способ, который можно, вероятно, назвать первым примером рассылки, – что-то вроде базы данных своих сторонников. В ХХ веке такие базы распространились повсеместно, а к XXI их уже освоили все партии, поскольку они помогают воздействовать на людей, исходя из их потребительских привычек.
Эта многовековая тенденция доказывает: для политических партий, если они хотят эффективно вербовать избирателей и в конечном счете экономить деньги и время, важно знать, где искать свой электорат. Вместо того чтобы распространять агитацию на всю страну, более эффективно адресовать ее тем людям, которые с большей вероятностью поддержат их программу.
Этот подход применяется в самых разных сферах, где существует проблема охвата аудитории и влияет сегодня практически на всех пользователей популярных веб-сайтов и сервисов.
Что все это значит для Фоя? Повысил ли он свой культурный уровень, к чему так стремится? Мы не знаем этого, так как нашей задачей было помочь ему начать путешествие, а не достичь цели.
Одна из ловушек, подстерегающая того, кто вознамерился научиться чему-то новому, заключается в том, что он рискует не с того начать. Это может привести к неудачам, разочарованию в предмете интереса или же к прекращению начатого дела. Результат анализа связей, инновации, поддерживаемые Интернетом и в скором будущем, вероятно, электронными приборами, которые смогут общаться между собой, – это один из способов для любопытных людей вроде Фоя обрести новые знания. В случае с Фоем технология, которая проанализирует миллионы песен, поможет ему приобщиться к миру культурных и просвещенных людей гораздо быстрее, чем если бы он ею не пользовался. Он уже подписался на рассылку встреч местных клубов любителей музыки, поэтому все выглядит обнадеживающе.
ОСВАИВАЙ ВСЕ ЭТО, ФОЙ. ПУТИ ЖИЗНИ, КАК СКАЗАЛ БЫ УСАТЫЙ НЕМЕЦКИЙ ФИЛОСОФ, РЕДКО БЫВАЮТ ПРОСТЫМИ. НО ЗА ТРУДНОСТЯМИ СЛЕДУЕТ ВОЗНАГРАЖДЕНИЕ.
7
Обнови статус