«Все в высшей степени геометрическое, причем преобладают решения, продиктованные прямыми линиями, – сказал Хайнц-Отто Пайтген, рассуждая о современном искусстве. – В частности, творения Джозефа Альберса, пытавшегося истолковать соотношение цветов, в сущности являли собой квадраты различных оттенков, размещенные один на другом. Такие вещи пользовались большой популярностью, но сейчас, взглянув на них, мы понимаем, что их время миновало. Людей такое уже не привлекает. В Германии строятся огромные жилые кварталы в стиле баухаус, но все выезжают оттуда, никто не желает в них жить. Как мне кажется, общество сегодня имеет веские причины для настороженного отношения к некоторым нашим взглядам на природу»[294]
. Пайтген помогал посетителям выбирать увеличенные изображения некоторых участков множества Мандельброта, множеств Жюлиа и других итерационных процессов, оформленные в изысканной цветовой гамме. В своем небольшом кабинете в Калифорнии он демонстрировал слайды, огромные плакаты и даже календарь с изображением множества Мандельброта. «Эта изменившаяся перспектива взгляда на окружающий мир вызывает огромный энтузиазм. Какой взгляд на природный объект верный? Скажем, что важнее всего в дереве? Прямая ли это линия или фрактальный образ?» Тем временем в Корнелле Джону Хаббарду пришлось столкнуться с коммерческими реалиями[295]. Когда математический факультет одолели сотнями просьб выслать изображения системы Мандельброта, он понял, что должен подготовить образцы и составить что-то вроде прейскуранта. В его вычислительных машинах хранились десятки уже просчитанных объектов, готовых к немедленной демонстрации. Организовать показ ему помогали аспиранты, помнившие все технические детали. Но все же наиболее эффектные картины, отпечатанные с большим разрешением и ярко расцвеченные, распространяли двое немцев – Пайтген и Петер Рихтер, трудившиеся вместе с группой ученых в Бременском университете при надежной поддержке одного из местных банков.Пайтген и Рихтер – математик и физик – обратились в своих исследованиях к множеству Мандельброта, которое стало для них кладезем идей, питавших современную философию искусства, оправданием новой роли эксперимента в математике, а также средством популяризации сложных систем. Они опубликовали множество сверкавших глянцем каталогов и книг, которые показали всему миру галерею компьютерных образов. Рихтер пришел к изучению сложных систем из физики, через химию, а затем и биохимию, где изучал биологические осцилляции[296]
. В серии статей, посвященных иммунной системе и окислению глюкозы, он сообщал, что колебания часто управляют динамикой процессов, которые традиционно рассматривались как статические по причине того, что живые системы не так-то легко изучать в режиме реального времени. Рихтер прикрепил к своему подоконнику хорошо смазанный двойной маятник, «комнатную динамическую систему», сконструированную по его заказу в университетской мастерской. Время от времени ученый запускал систему, задавая хаотические неритмичные движения, которые он мог имитировать также и с помощью компьютера. Зависимость от начальных условий оказалась настолько сильной, что гравитационное притяжение единственной дождевой капли в миле от места проведения опыта спутывало движение в пределах пятидесяти-шестидесяти полных оборотов, что занимало около двух минут. Многоцветные графические рисунки Рихтера, где изображалось фазовое пространство его маятника, указывали на зоны смешения периодичности и хаоса. Ученый использовал аналогичную графическую технику для изображения идеализированных участков намагничивания в металле, а также для изучения множества Мандельброта.Его коллеге Пайтгену изучение феномена сложности давало шанс заложить оригинальные традиции в науке, вместо того чтобы просто искать решения проблем. «Начав сегодня трудиться в такой удивительной новой области, как эта, талантливый ученый сумеет предложить нетривиальные решения уже через несколько дней, неделю или спустя месяц», – заметил Пайтген. Дело в том, что предмет изучения еще не структурирован. «В структурированной области, – продолжал он, – понятно, что изучено, что не изучено и что уже пытались изучить, но не смогли. При этом приходится работать над какой-то давно известной проблемой – иначе ничего не получится. И она, разумеется, должна быть сложной, иначе бы ее уже давно решили»[297]
.