b) Здесь, однако, необходимо устранить одно недоразумение, которое обычно вносит путаницу в проблему четырехмерного пространства и которое как раз особенно вредно для понимания кватернионов. Вовсе не обязательно мыслить четырехмерное пространство как некую особую метафизическую действительность, не имеющую ничего общего с обычным четырехмерным пространством. Хотя признание трехмерного пространства ничуть не более основательно, чем признание пространства любого числа измерений, все же в трехмерном пространстве (недаром для диалектики оно есть «ставшее», «наличное бытие») мы имеем нечто как бы в подлинном смысле «действительное», «фактическое», «эмпирическое». Но тут мы прямо должны сказать, что чистого трехмерного пространства вообще не существует, если уж на самом деле гнаться за «фактическим» и «эмпирическим». Фактическое и эмпирическое пространство никогда не трехмерно, ни в своем смысловом наполнении, ни в своем субстанциальном принципе. Что оно всегда чем–то наполнено, это понимают все. Если не понятно, как можно считать заполненным «чистое», пустое пространство, то я бы предложил здесь простейший аргумент. Если Москву и Киев считать математическими точками пустого пространства и если между Москвой и Киевом действительно «пустота», т. е. ничего нет, то почему я, живя в Москве, не нахожусь в это же время в Киеве? Если меня что–нибудь отделяет от Киева, то это есть именно что–нибудь, а не ричгпо, и если это-—пустота, то эта пустота есть фактически такая сила, преодолеть которую можно только при помощи затраты огромных усилий. Итак, пространство всегда так или иначе заполнено, оно всегда так или иначе некое поле сил, и уже по одному этому оно не просто трехмерно.
Однако оно не просто трехмерно и в другом смысле, в смысле вмещения своего субстанциального инобытия. Оно имеет ту или иную кривизну, и только Эвклидова геометрия приравнивает эту кривизну нулю, будучи, следовательно, как раз абстрактной, а не живой теорией живого пространства.
с) И вот, кватернионы есть арифметический аналог именно выраженного пространства, четырехмерного пространства. Это—выраженное число. И мы вспоминаем здесь нашу общую позицию, занятую в исследовании природы алгебраического, трансцедентного и гиперкомплексного числа, позицию энергийно–эманативного выражения. Но в трансцедентном числе эта выраженность только начала проявляться как конкретный образ (покамест еще плоскостной), а в алгебраическом она и вовсе только еще потенция. Зато в гиперкомплексном числе, в кватернионе, она стала законченной, фигурно осмысленной, выраженной действительностью.
2. а) Именно, здесь мы получаем одну вещественную прямую, которая и по направлению и по абсолютной величине оказывается носительницей четырехмерного пространства. Поскольку в кватернион входит три мнимых единицы, плоскость, пространство и четырехмерное пространство не даны тут сами по себе, вещественно, отдельно от заданной вещественной прямой. Но эта последняя отражает на себе и плоскость, и трехмерное пространство, и деформацию в связи с четырехмерностью. Мы имеем одну вещественную прямую или один и единственный вещественный вектор, который, однако, несет с собою четырехмерную значимость. Вспомним, что называется модулем обыкновенного комплексного числа. Это—абсолютная величина того радиусавектора, который указывает направление комплексной точки плоскости по отношению к началу координат. Его можно получить, рассматривая обе части комплекса как катеты прямоугольного треугольника; его можно получить и как квадратный корень из произведения сопряженных комплексных чисел. Тут он равняетсяa
2+ b 2. Аналогично для кватерниона мы имеем величину =a 1+ b 2+с 2+ d 2, называемую тензором кватерниона. Она играет первостепенную роль во всем учении о четырехмерном пространстве.b) Чтобы понять логическую сущность тензора, будем исходить из определения модуля обычных комплексных чисел. Модуль комплексного числа есть квадратный корень из произведения самого числа на сопряженное с ним. Во–первых, что значит a—bi—число, сопряженное с а+b? Понимать его надо, конечно, векторно, как и вообще комплексное число. Но это значит, что в данном случае линия мнимостей имеет обратное направление. Направление для нас имеет только единственный диалектический смысл: это—вид становления. Следовательно, постулируя для всякого комплексного числа сопряженное с ним, мы постулируем просто возможность противоположных направлений становления. Но что же дальше?