Читаем Личность и Абсолют полностью

Дальше мы наблюдаем судьбу нашего вещественного отрезка А В после того, как он вернулся в комплексную область, т. е. после того, как ОН'подвергся воздействию упомянутого становления. Раньше, будучи всецело вещественным, он давал нам определенное протяжение, равное а * вещественным единицам. Теперь, взявши ту или иную точку С на плоскости, мы видим, что расстояние АС совсем иное, чем АВ. АВ претерпело растяжение (или укорочение, что в данном случае безразлично), и это растяжение определяется положением выбранной нами точки на плоскости. Наш отрезок АВ повернулся на определенный угол и растянулся. Всмотримся в это растяжение.

Оно есть не только результат увеличения длины отрезка, но и результат поворота его на определенный угол. Но мы отвлечемся пока от этого поворота и будем рассматривать растяжение независимо от направления. Чтобы эта независимость от направления была не просто абстрактным допущением, но еще была и диалектически понятна, надо реально взять два противоположных направления и допустить, что это растяжение одинаково там и здесь. Если для взаимно противоположных направлений растяжение останется одним и тем же, то это и будет гарантией того, что растяжение действительно не зависит ни от какого направления вообще. Но как это сделать? Очевидно, необходимо допустить, что растяжение находится в одном и том же отношении к противоположным направлениям, что соотношение растяжения и направления в общем случае совершенно тождественно с этим же соотношением в другом случае. Другими словами, растяжение есть не что иное, как среднее геометрическое между числами, связанными с взаимно противоположными направлениями. Но числа с взаимно противоположным направлением и есть сопряженные комплексные числа. Отсюда и вытекает, что модуль (т. е. абсолютная величина) комплексного числа есть квадратный корень из произведения комплексного числа на сопряженное с ним.

Следовательно, определение модуля через сопряженные элементы есть в диалектическом смысле фиксация растяжения вещественного отрезка при данном переходе его в комплексную область, которое берется в аспекте полной независимости этого отрезка от всякого направления в комплексной области.

c) Теперь станет понятной и философская сущность тензора. Тензор кватерниона играет в четырехмерном пространстве, очевидно, ту же самую роль, что модуль комплексного числа в двухмерной области. «Тензор» значит «растягиватель». Одно растяжение мы получаем, когда переходим от линии к плоскости, т. е. отражаем плоскость на линии. Другое растяжение образуется при переходе в пространство. Но ведь мы представляем себе, что трехмерное пространство определенным образом выражено. Это значит, что мы соотносим его с четвертым измерением, хотя и не перешли в последнее в вещественном смысле, а только зафиксировали его на вещественном отрезке как мнимое. Тогда, следовательно, наше растяжение вещественного отрезка усложнится еще более, и—мы получим понятие тензора. Тензор одним махом охватывает всю деформацию, которая происходит с вещественным отрезком, когда он отображает на себе четырехмерное пространство.

d) Разумеется, соответствующее изменение получает и направление. На плоскости мы уже имеем определенный угол, на который повернулся наш отрезок. Полученное таким способом направление меняется в свою очередь при воздействии новой мнимой единицы, а эта трехмерная направленность усложняется еще дальше, когда заходит речь о третьей единице. Кватернион, таким образом, уже взятый сам по себе, гласит о тройном процессе растяжениями тройном процессе поворота данного вещественного отрезка прямой, причем поскольку он есть комбинация четырех разнонаправленных единиц, то и другое мыслится еще переносимым из одной области в другую (из одной системы координат в другую). Кватернион, таким образом, есть просто отрезок в четырехмерном пространстве, который вещественно явлен как определенная система растяжений и поворотов.

3. а) Особенно просто и рельефно это можно видеть на умножении кватернионов. Если сумма двух кватернионов не представляет собою ничего особенного, кроме обычного для комплексных чисел раздельного сложения вещественных и мнимых частей

q+q'={d+d')+i(a+a')+j(b+b')+k{c+c'),

то умножение кватернионов весьма интересно, хотя и аналогия его с векторным умножением вообще вполне очевидна. Так как векторное умножение обыкновенных комплексных чисел значительно проще, то вспомним сначала его.

ОМ и ON—два вектора, соответствующие двум разным комплексным числам. Требуется их перемножить. Так как умножить—значит повторить множимое столько раз, сколько единиц во множителе, то отложим на линии вектор , равный единице, и построим на линии ON треугольник OPN, подобный треугольнику OMQ. Тогда ОР будет как раз составлено из ОМ так, как ОМ составлено из OQ= 1. Или— ОР:ОМ=ОМ: 1, откуда

О =rr '

; L POQ = L PON+ L NOQ,

что при LQ = и LMOQ = ' и, ввиду подобия указанных треугольников, при LPON= LMOQ = дает

LPOQ = + ' .

Перейти на страницу:

Похожие книги

Этика Спинозы как метафизика морали
Этика Спинозы как метафизика морали

В своем исследовании автор доказывает, что моральная доктрина Спинозы, изложенная им в его главном сочинении «Этика», представляет собой пример соединения общефилософского взгляда на мир с детальным анализом феноменов нравственной жизни человека. Реализованный в практической философии Спинозы синтез этики и метафизики предполагает, что определяющим и превалирующим в моральном дискурсе является учение о первичных основаниях бытия. Именно метафизика выстраивает ценностную иерархию универсума и определяет его основные мировоззренческие приоритеты; она же конструирует и телеологию моральной жизни. Автор данного исследования предлагает неординарное прочтение натуралистической доктрины Спинозы, показывая, что фигурирующая здесь «естественная» установка человеческого разума всякий раз использует некоторый методологический «оператор», соответствующий тому или иному конкретному контексту. При анализе фундаментальных тем этической доктрины Спинозы автор книги вводит понятие «онтологического априори». В работе использован материал основных философских произведений Спинозы, а также подробно анализируются некоторые значимые письма великого моралиста. Она опирается на многочисленные современные исследования творческого наследия Спинозы в западной и отечественной историко-философской науке.

Аслан Гусаевич Гаджикурбанов

Философия / Образование и наука
Осмысление моды. Обзор ключевых теорий
Осмысление моды. Обзор ключевых теорий

Задача по осмыслению моды как социального, культурного, экономического или политического феномена лежит в междисциплинарном поле. Для ее решения исследователям приходится использовать самый широкий методологический арсенал и обращаться к разным областям гуманитарного знания. Сборник «Осмысление моды. Обзор ключевых теорий» состоит из статей, в которых под углом зрения этой новой дисциплины анализируются классические работы К. Маркса и З. Фрейда, постмодернистские теории Ж. Бодрийяра, Ж. Дерриды и Ж. Делеза, акторно-сетевая теория Б. Латура и теория политического тела в текстах М. Фуко и Д. Батлер. Каждая из глав, расположенных в хронологическом порядке по году рождения мыслителя, посвящена одной из этих концепций: читатель найдет в них краткое изложение ключевых идей героя, анализ их потенциала и методологических ограничений, а также разбор конкретных кейсов, иллюстрирующих продуктивность того или иного подхода для изучения моды. Среди авторов сборника – Питер Макнил, Эфрат Цеелон, Джоан Энтуисл, Франческа Граната и другие влиятельные исследователи моды.

Коллектив авторов

Философия / Учебная и научная литература / Образование и наука