Соответственно, есть один шанс из трех, что выбранная вами дверь выигрышная, и два шанса из трех, что машина стоит за другой дверью. Поэтому вам выгоднее поменять свое решение, выбрать другую дверь.
Итак, в нашем примере получается: вероятность того, что «Феррари» за дверью А, составляет один шанс из трех, а вероятность того, что «Феррари» за дверью В или С – два шанса из трех. Затем дверь В выходит из игры. При этом вероятность того, что машина стоит за дверью А, составляет 1/3, а вероятность того, что она за дверью С, – 2/3. Поэтому нужно изменить свой выбор и открыть дверь С.
Конечно, существует вероятность, что вы сразу угадали. В этом случае при смене двери вы проиграете. Но такая вероятность в два раза ниже, чем вероятность того, что, поменяв дверь, вы выиграете. Вот и все.
Это, кстати, хороший пример того, как надо применять теорию вероятностей на практике.
Так что меняйте свой выбор и выигрывайте!
Но вот вам дополнительный пример на случай, если вы все еще сомневаетесь.
Перед вами корзина. В ней три шара, одинаковых на ощупь. Вы не видите шаров, но знаете, что один шар красный, как новенькая «Феррари», а два других – черные, как козлы из телевикторины.
Какова вероятность того, что вы вытащите из корзины черный шар? Правильно, 2/3, два шанса из трех.
Вы достаете из корзины один из шаров и, не глядя на него и не разжимая кулака, чтобы не увидеть цвет шара, сразу прячете его в специальный непрозрачный мешок. Таким образом, в корзине осталось два шара.
Повторю: скорее всего, вы достали из корзины именно черный шар. Ведь черных шаров в корзине два, а красный всего один.
Затем ведущий на ваших глазах достает из корзины черный шар (теперь в корзине остался всего один шар) и предлагает вам сделать выбор: или остановиться на шаре, который вы вытащили вначале, или взять последний шар из корзины.
Что вы выберете?
Если вы и до сих пор не верите, то возьмите и проверьте. Для этого вам понадобится надежный человек и три туза: один красный и два черных. Пусть ваш приятель сыграет роль ведущего: разложит эти три карты на столе так, чтобы он знал, какая из них красный туз, а вы не знали. Затем, когда вы выберете карту, пусть он откроет одного из черных тузов.
Сделайте 100 проб и запишите, сколько раз вы выиграете, если будете менять свой первоначальный выбор. Затем проведите еще 100 проб, но на этот раз не меняйте свой выбор. И снова запишите, в скольких случаях вы выиграете. Затем сравните результаты.
Сыграем в орлянку?
А все оттого, что я смолоду ходил на кладбище играть в орлянку! Ей-богу, начал с орлянки и покатился.
Трудно ли вам было читать о телепатии и опытах с картами Зенера? Трудно ли было разобраться в теории вероятностей, которая позволяет определить, угадал человек карты или же имело место подлинное чтение мыслей?
Если не было трудно – хорошо. Но тем не менее данные современной науки таковы, что для нашего разума сфера случайностей и вероятностей является достаточно сложной. Другими словами, когда наш разум имеет дело с вероятностями и случайностями, ему приходится туго.
Скажу больше: именно на проблемах с пониманием случайностей и вероятностей основаны многие ловушки, в которые попадает наш разум, а вместе с ним и мы.
Так что давайте еще немного поговорим о теории вероятностей. И для этого мы с вами поиграем в знакомую всем благодаря Роберту Льюису Стивенсону пиратскую игру – орлянку.
В эту игру играют вдвоем. Один подбрасывает монетку, а второй пытается предсказать, орел выпадет или решка. Если второй игрок предсказал правильно, то он забирает монету, а первый достает новую монету, чтобы подбросить ее. Если же второй игрок не угадывает – монета остается у бросавшего, а игроки меняются ролями – кидает монету теперь второй игрок, а первый будет угадывать, какой стороной она выпадет.
И вот мой вопрос: если вы сказали «решка» и угадали, вам стоит в следующий раз снова сказать «решка» или же лучше сказать «орел»?
А сейчас внимание: правильный ответ!
Нет разницы. Независимо от того, на какую сторону упала монета в предыдущий раз, в этот раз вероятность выпадения орла снова равна вероятности выпадения решки.
«А если мы будем подбрасывать одну и ту же монету?» – может спросить кто-нибудь из читателей.
Все равно нет разницы. Каждое подбрасывание монеты – это событие,
Кстати, одна из главных причин, по которой человек не может правильно воспринимать случайности и вероятности событий, заключается в том, что он не понимает, что такое