Читаем Малыши и математика. Домашний кружок для дошкольников полностью

Рис. 123. Чтобы из квадрата 4x4 получить квадрат 5x5, добавляем к нему две полоски длины 4. Однако то, что получилось — это ещё не совсем квадрат: надо добавить ещё один кубик.


Тут Дима сообразил, что к 16 следует добавлять не 8, а 9, и сказал ответ: 25. К 25 он уже сразу прибавил правильное число: 11 — и получил 36. Так мы, добавляя последовательно 13, 15, 17, 19, и добрались до ста.

Очень забавно, что ту закономерность, к которой я их вёл — что сумма нечётных чисел равна квадрату — ребята угадали с самого начала; зато они никак не могли догадаться до того, что мне казалось самоочевидным: что квадрат можно вычислить как произведение 4∙4, 5∙5 и т. п. Перед нами лежал квадрат 5 х 5, и я всё спрашивал, как можно подсчитать количество кубиков в нём, а дети всё пересчитывали их разными зигзагами и спиралями, и никак не могли догадаться, что можно взять пять раз по пять. Лишь с большим трудом, упрёками-намёками, мне удалось подсказать им эту идею. Я стал спрашивать, чему равно 6∙6, 7∙7 и т. д., но они уже не вычисляли, а сразу говорили ответ, глядя в свои записи. Их вера в закономерность незыблема. В заключение я задал им на дом такую задачу: найти сумму 1 + 3 + 5 + 7 + … + 99. Петя с Женей только хихикали в ответ и говорили:

— О-ой, девяносто девять!

Дима отнёсся к задаче более серьёзно и сказал:

— Я похожую задачу уже решал, но не помню, как…

Потом, когда все уже разошлись, он вспомнил, что нужно складывать крайние члены — и тогда каждый раз получится 100: 1 + 99 = 100, 3 + 97 = 100, Однако поначалу он ошибся, назвав ответ 5 000. Я сказал:

— Неправильно.

Некоторое время (минут пять) Дима приставал ко мне, что нет, всё-таки правильно. Потом вдруг догадался:

— А-а, здесь будет не пятьдесят раз по сто, а в два раза меньше!

И тут же выдал ответ: 2 500.

Через несколько дней Дима сам предложил вычислить сумму нечётных чисел от 1 до 199 и получил правильный ответ: 10 000. Я предложил ему досчитать до 999. Он слегка испугался, но стал считать. Деля 500 пополам, он ошибся и получил 270, так что его первоначальный ответ был 270 000. Я сказал:

— Неправильно.

И он исправился. Характерно, что его метод не совпадает с тем, на который я пытался натолкнуть ребят во время занятия, т. е. он вычисляет не квадрат. Более точно: я имел в виду для вычисления суммы 1 + 3 +… + (2n

— 1) использовать формулу n2, а Дима вместо этого использует формулу 2n.

Как-то в разговоре я сказал ему, что пытался намекнуть им на другую идею: подсчитать количество чисел в сумме и умножить это число само на себя.

Дима обдумал моё утверждение и поразил меня совершенно нетривиальным замечанием:

— Твой метод лучше, потому что мой годится не для всех чисел, а только для тех, которые делятся на 4.

(Имеется в виду, что 2n должно делиться на 4.)


Занятие 74. Геометрия чисел

24 ноября 1983 года (четверг). 1800-1900 (1 час). Дима, Петя, Женя.

Задание 1. Фокус — лишняя клетка.

Я показал ребятам известный фокус с появлением лишней клетки. В этом фокусе квадрат размером 8x8 (или «шахматная доска») разрезается на 4 части: два треугольника и два четырёхугольника, и из них складывается прямоугольник 5x13 (рис. 124).



Рис. 124.

Квадрат площади 8∙8 = 64 разрезается на части, и из них складывается прямоугольник площади 5∙13 = 65. Откуда взялась лишняя клетка?


Все операции мы производили физически, т. е. рисовали на бумаге, разрезали, перекладывали и т. п. Попутно обсудили множество полезных вещей: что такое квадратный сантиметр, и что площадь комнаты 8 см х 8 см будет не 8 см2, а 64 см2 (или, как пытались сказать ребята, «квадратный восьмисантиметр») и т. п. Видимо, представление о площади уже начинает у них складываться: хотя они и не понимали поначалу, о чём идёт речь (когда я стал говорить про площадь) и не догадывались, что площадь комнаты получается произведением сторон, но всё же появлению лишней клетки очень удивились. Секрета я им, конечно, не раскрыл.

Я думал, что мы просто где-то ошиблись в подсчёте и много раз пересчитывал разными способами, но ничего не помогало. — Дима.

Очень смешной был момент, когда Дима принялся подсчитывать количество клеток на шахматной доске. Почему-то наиболее естественный способ счёта, полосками по 8 клеток, ему в голову не пришёл. Сначала он стал считать по спирали (рис. 125); естественно, после нескольких витков он сбился, пошёл не на ту линию. Петя ему на это указал, возник спор, и в итоге оба забыли, куда двигаться дальше и сколько клеток уже сочтено.



Перейти на страницу:

Похожие книги

Рассказы о металлах
Рассказы о металлах

Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов.Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их "планах на будущее" рассказывает эта книга.Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.Иллюстрации Алексея Владимировича Колли.

Сергей Иосифович Венецкий

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Металлургия / Научпоп / Книги Для Детей
Томек в стране кенгуру
Томек в стране кенгуру

Альфред Шклярский принадлежит к числу популярнейших польских, писателей, пишущих для молодежи. Польскому читателю особенно полюбился, цикл приключенческих романов Шклярского. Цикл объединен образами главных героев, путешествующих по разным экзотическим странам земного шара. Несмотря на общность героев, каждый роман представляет из себя отдельную книгу, содержание которой определено путешествиями и приключениями Томека Вильмовского, юного героя романов, и его взрослых товарищей.Кроме достоинств, присущих вообще книгам приключенческого характера, романы Шклярского отличаются большими ценностями воспитательного и познавательного порядка. Фабула романов построена с учетом новейших научных достижений педагогики. Романы учат молодых читателей самостоятельности, воспитывают у них твердость характера и благородство.Первое и второе издания серии приключений Томека Вильмовского разошлись очень быстро и пользуются большим успехом у молодых советских читателей, доказательством чему служат письма полученные издательством со всех концов Советского Союза. Мы надеемся, что и третье издание будет встречено с такой же симпатией, поэтому с удовольствием отдаем эту серию в руки молодых друзей.

Альфред Шклярский

Приключения / Детская образовательная литература / Путешествия и география / Детские приключения / Книги Для Детей