И уж совсем трудные логические задачи получаются с пересекающимися классами. Например, пять картинок нужно разбить на две равные группы, по три картинки в каждой; при этом одна из картинок общая — она принадлежит обеим группам. Вот, например: мяч, автомобильная шина, резиновые сапоги, пальто, шапка. Здесь три предмета из резины (мяч, шина, сапоги) и три предмета одежды (сапоги, пальто, шапка); общий элемент — сапоги. Отдельный вопрос: как чисто физически поделить пять картинок на две группы по три — не рвать же одну карточку пополам. Мы пользовались стандартным приёмом: двумя верёвочными кругами, в пересечении которых помещали общий предмет (на рис. 7 показан ещё один пример аналогичной ситуации).
Рис. 7.
Для Димы этот класс задач явно представлял собой проблему (или это сам Дима представлял собой проблему?).
— Это хоть и дядя, но похож на тётю, — говорил он про старика с бородой-лопатой и помещал его в общество женщин. Про автомобильную шину он долго доказывал нам всем, что это тоже одежда, так как её можно носить на поясе. Когда же с ним никто не согласился, он сказал:
— Всё равно это одежда, потому что её надевают на автомобиль.
Кто-нибудь скажет: вот, ребёнок умеет мыслить творчески, нестандартно. Насчёт «нестандартно» согласен, но вот творчески… Человек по-настоящему творческий умеет предложить неожиданное, нестандартное решение и при этом остаться в рамках задачи. Сложить шесть спичек колодцем — тут я согласен, это решение творческое. Счесть же бородатого старика тётей или автомобильную шину одеждой — нет. Очень часто у Димы присутствует первый компонент — нестандартность, а вот остаться в рамках задачи или хотя бы вблизи от них он пока не умеет. Надо как-то суметь, не подавив одно, развить другое. А как?
Наша следующая (и последняя на этот раз) задача — из области геометрии. Я извлекаю цветную детскую мозаику, купленную когда-то в магазине «Лейпциг» (увы, всего в одном экземпляре: в момент покупки мы ещё не помышляли о кружке). Мозаика представляет собой прямоугольное поле с отверстиями. В них вставляются одинаковые по форме фишечки пяти разных цветов (рис. 8).
Рис. 8.
Цвет фишек очень яркий, насыщенный, приятный для глаз. Наша задача — про симметрию. Сначала я выкладываю ось — одноцветную вертикальную линию, проходящую посередине поля. Я называю эту линию «зеркалом»; в это зеркало сейчас будут смотреться разные фигурки. Я строю с одной стороны от оси разнообразные небольшие фигурки, а мальчики должны построить симметричные им фигурки с другой стороны. Я варьирую всё, что можно: цвет, размер, расположение фигур. На следующих занятиях будет меняться также и расположение оси: сначала она станет горизонтальной, потом пойдёт по диагонали. С помощью настоящего зеркала мы проверяем наши решения: оказывается ли за зеркалом то же самое, что мы видим в зеркале?
Мальчики справляются с задачей на удивление легко, почти не допускают ошибок. Не могу понять, почему эта тема (осевая симметрия) вызывает трудности в шестом классе! Мы впоследствии посвятили ей много занятий. Симметрия в самом деле очень богатая тема, и к тому же красивая. Мы рассматривали картинки с симметричными узорами из книг по популярной математике. Мы рисовали симметричные фигуры разноцветными фломастерами на клетчатой бумаге; делали симметричные кляксы, складывая лист бумаги пополам; вырезали новогодние снежинки; находили ошибки в симметричных рисунках, в которых были специально сделаны кое-где нарушения, отклонения от точной симметрии; среди восьми карточек находили четыре симметричные и четыре несимметричные фигуры; у одной фигуры находили все возможные оси симметрии, и т. д. Другие виды изометрий — центральная симметрия, поворот, параллельный перенос — оказываются для детей несколько более сложными, а вот осевая симметрия буквально идёт «на ура».