Мы наливаем в бутылку воду и, наклоняя бутылку, показываем ему уровень. Дима делает попытку исправить рисунок, но на этот раз изображает уровень вертикальным, а потом даже кривым (рис. 25).
Рис. 25.
(Помню, не так давно я вычерпывал воду из ванночки ковшиком, и Дима спрашивал, почему так получается, что я всё время черпаю с одного края ванночки, но яма на этом месте не образуется, а вода всё равно остаётся ровной.)
Если бы меня спросили, получится ли так яма, я бы, наверное, ответил, что нет. Но я не понимал, зачем ещё можно вычерпывать воду, если не затем, чтобы получилась яма. А уж если сам Папа копает, то всё должно получиться. Папе я верил больше, чем своему опыту. — Дима.
Я ничего не объясняю, и занятие на этом кончается. Напоследок рассказываю историю про Крошку Ру, который очень не любил рыбий жир, а маме Кенге надо было обязательно его уговорить, потому что доктор велел выпивать в день по стакану (при этом я показал на узкий стакан). И тогда мама Кенга стала переливать рыбий жир из узкого стакана в широкий. Крошка Ру думал, что после переливания рыбьего жира становится меньше (его ведь теперь полстакана, и уровень ниже) и соглашался его выпить. Вот так и вылечился.
По моим, пока незначительным, наблюдениям дети-интраверты проявляют больше склонности к логическому мышлению, а экстраверты имеют большие успехи в геометрии. К интравертам я отношу Диму и Женю, а к экстравертам, соответственно, Петю и Андрюшу (хотя никаких тестов на эту тему я не проводил, это всё — внешние впечатления).
Характерно, что Дима до сих пор часто проливает жидкости из сосудов (чай из чашки, воду из банки для рисования и т. п.), так как недостаточно следит за их горизонтальностью. Мы на него сердимся за неуклюжесть и невнимательность, а причина, возможно, в математике.
Теория вероятностей
— продолжение.Задание 1.
Я:— Дима и Женя, наверное, сразу вспомнят игру, в которую мы играли, а Пети тогда не было, поэтому я расскажу всё с начала.
Я рассказываю про человека, ищущего пару ботинок, и про тёмный чулан. Кладу в мешок четыре пары кубиков — два жёлтых, два красных, два синих и два чёрных. Мы по очереди вытаскиваем кубики до тех пор, пока не образуется одноцветная пара. Каждый берёт себе плашечку с цифрой, показывающей, сколько ботинок ему для этого пришлось вытащить.
Я тоже участвую в игре. При этом мне достались четыре кубика всех четырёх цветов. Я обсуждаю с ребятами тот факт, что какой бы кубик ни оказался пятым, всё равно обязательно будет готовая пара.
Петя продемонстрировал, что такое везение: единственный раз за оба занятия вытащил сразу два одноцветных кубика.
Задание 2.
Та же история про трёхногого человека. Мы кладём в мешок три жёлтых, три красных и три синих ботинка; цель та же — вытащить вслепую полный комплект обуви, три одноцветных ботинка. (Наташа пытается мне «помогать» и подсказывает, что это не ботинки, а варежки и шапка, но я настаиваю на своём варианте.)Когда тащу я, у меня снова оказывается максимальный вариант: 6 кубиков, причём трижды по два цвета. Я снова пользуюсь возможностью и обсуждаю с ребятами тот факт, что какой бы кубик я сейчас ни вытащил (седьмым по счёту), у меня обязательно образуется полный комплект.
Задание 3.
После того, как каждый вытащил кубики по одному разу, я убираю мешок и раскладываю все кубики на столе.Последовательно для трёх, четырёх, пяти и шести кубиков мы показываем, как
Потом я предлагаю сделать то же самое для семи кубиков. После нескольких проб дети заявляют, что при семи вытаскиваниях хотя бы один комплект получится обязательно. Я дополняю их опыт чем-то вроде доказательства.
Задание 4.
Параллельно с обсуждением п. 3 я вытаскиваю сначала синюю бумажку — на неё мы кладём плашечки с цифрами 0, 1, 2 («невозможно получить комплект»). Затем появляется зелёная бумажка, и на неё мы кладём цифры 3, 4, 5, 6 («возможно, но не обязательно» получается комплект). Наконец, цифры 7, 8, 9 («обязательно» получается комплект) мы кладём на красную бумажку. (Интересно отметить, что упомянутые синестезии невозможности с синим цветом, обязательности с красным, а возможности с зелёным мы с Аллой предложили независимо друг от друга, что говорит в пользу того, что они выбраны в каком-то смысле правильно. Что-то вроде «холодно», «тепло», «горячо».)