Чтобы ответить на этот вопрос, нужно задать другой: а откуда вообще возникла теория вероятностей? Где её источник? Ясно: как и многие другие науки, как даже сама арифметика, теория вероятностей возникла из наблюдений над определёнными явлениями реального мира, а именно, над случайными, непредсказуемыми явлениями. Так вот, как раз такие наблюдения, предшествующие науке, вполне можно проводить вместе с детьми. Не любые, конечно, лишь самые простые. Да дети и сами, без нас, этим занимаются — например, тогда, когда играют в игры с использованием игральной кости (кубика с написанными на нём очками от 1 до 6). В наших силах, однако, чуть-чуть выпятить, самую малость подчеркнуть вероятностную природу их наблюдений, а также познакомить их с тем, что вероятностный мир тоже несёт в себе значительное многообразие. Можно, например, вместо кубика предложить детям кособокий многогранник, чтобы они увидели, как игра становится «несправедливой»: одни цифры выпадают чаще, чем другие. Или можно придумать игру, в которой требуется считать сумму очков на двух костях. Здесь тоже дети рано или поздно заметят, что, скажем, сумма 7 выпадает гораздо чаще, чем сумма 2. В такого рода деятельности мы не ограничены ничем, кроме собственной фантазии и реальных возможностей реальных детей. Если дети поняли что-то, если какое-то зерно запало в разум — очень хорошо. Если нет — неважно; тогда, значит, мы «просто играли».
Попробую сформулировать ещё раз. Нас интересует не наука сама по себе как готовый продукт деятельности прошлых поколений, а те предварительные, предшествующие ей наблюдения, которые когда-то послужили толчком к её появлению.
В этой главе я хочу рассмотреть более подробно один пример. В главе 1 рассказывалось об одном занятии; в этой главе речь пойдёт об одной задаче. Всего одна задача — а сколько она даёт поводов для размышлений!
Задача эта относится к области комбинаторики. Когда-то такую науку проходили в школе, в девятом классе (имеется в виду школа-десятилетка). Потом сочли очень трудной (вспомните хотя бы такое пугало, как
Мы рассаживаемся вокруг мозаики. Задание такое: надо построить «бусы» — цепочку из пяти фишек, в которой две фишки должны быть красными, а оставшиеся три — синими. Это, разумеется, можно сделать разными способами. Так вот, наша задача как раз и состоит в том, чтобы перебрать все способы и при этом избежать повторений. По науке эти последовательности называются
Ничего этого, конечно, дети не знают и на наших занятиях не узнают. Они просто строят бусы — по очереди, один за другим. Каждый результат проверяется всеми вместе — действительно ли он новый или совпадает с каким-нибудь из построенных ранее. Порой и спорим. Например, на рис. 34 изображено одно решение или два разных?
Рис. 34.
На самом деле спорить тут не о чем: мы можем
В конце концов мы доходим до 10 решений.
Главный вопрос комбинаторики — сколько всего имеется решений. Но мальчики ещё очень далеки от него. Они вообще пока не видят разницы между «это невозможно» и «у меня не получается», и выражают твёрдую уверенность в том, что уж я-то могу построить и одиннадцатое решение, и двенадцатое, и вообще сколько захочу. Приходится взяться за дело мне самому. Ребята перебирали свои решения как попало, без всякой системы. Зато я демонстрирую образец систематичности: перебираю решения в строго определённом порядке. Сначала ставлю одну красную фишку на первое место, а вторую — поочерёдно на второе, третье, четвёртое, пятое места. Когда эта серия исчерпана, ставлю первую фишку на вторую позицию и т. д. Вы думаете, это производит впечатление? Ни малейшего. Единственное, что они поняли — это то, что у меня тоже ничего не вышло. (Как бы ещё не подорвать свой авторитет…) Отличить одно решение от другого они уже могут, а вот отличить порядок от беспорядка им пока не по силам. Надо отложить эту задачу эдак на полгодика. (А пока, может быть, приучать их аккуратно складывать все игрушки на свои места. Любопытно, связан ли порядок в игрушках с порядком в мыслях?)