Задания на будущее.
(1) Активный вариант: ребята должны не отыскивать карточки из готового набора, а сами их рисовать (для этого элементами множества можно сделать простые значки).(2) То же, но связать с множеством предметов, раскладываемых на столе в двух верёвочных кругах (в качестве элементов множеств можно взять цифры, в качестве предметов на столе — плашечки с цифрами из математического набора первоклассника).
Задание 3.
Рис. 41.
Объясняю, что требуется сделать — предполагается решать задачу на мозаике. Затем по очереди строю на мозаике фигурки и предлагаю ребятам построить вдвое большие. Они легко справляются, но я в процессе работы неожиданно понимаю, что плохо продумал задачу. А именно, я замечаю две трудности (дети их не замечают):
1) Они, естественно, каждую фишку заменяют двумя; но как тогда поступать с угловыми фишками? Ребята их тоже удваивают, но результат зависит от того, с какого конца они начинают работу (рис. 42).
Рис. 42.
2) Точки-фишки можно по-разному собирать в «созвездия», то есть по-разному интерпретировать в виде линий; так, я построил для Жени фигурку из 8 фишек, показанную на рис. 43 слева, но Женя воспринял её иначе (на том же рисунке справа), и именно такую фигурку стал удваивать.
Рис. 43.
Я честно обсудил с ребятами обе трудности, сказав, что в следующий раз то же самое задание будет на клетчатой бумаге, и тогда никаких двусмысленностей уже не останется.
Задание 4.
— И, наконец, последнее задание…
Ребята меня перебивают:
— Почему последнее? Мы хотим ещё!
Ах, бальзам на раны! После того страшного удара, когда они от меня сбежали, мне так необходимы эти подкрепления!
На столе «доска» — лист бумаги, расчерченный на клетки, 7x15 клеток. Под клетками по горизонтали подписаны числа от 1 до 15. Играем мы вчетвером (четвёртый — я). Каждый получает по три фишки, одну большую и две маленькие, все три одного цвета. Игроки ставят фишки на первой горизонтали. Потом мы все по очереди бросаем две игральные кости, суммируем число очков (заодно упражнение в арифметике!), и та фишка, номер которой совпадает с выпавшей суммой, делает шаг вперёд. Выигрывает та фишка, которая первой выйдет на верхнюю (седьмую) горизонталь. Если у игрока выиграла большая фишка, он получает 2 коп., если маленькая — 1 коп.
Цель задания: (а) напомнить о существовании невозможных событий (суммы 1, 13, 14, 15 невозможны); (б) показать на опыте, что среди возможных событий бывают более вероятные и менее вероятные (некоторые суммы имеют больше шансов выиграть, чем другие).
Игру мы провели два раза, хотя ребята хотели ещё. Про невозможные суммы ребята сами не догадались, но я где-то в процессе игры спросил, почему же эта фишка (единица) совсем не двигается, и они всё объяснили (Дима первым дал правильный ответ). После этого я поинтересовался, какие ещё комбинации невозможны, и они тоже правильно ответили. Про разновероятность мы ничего не обсуждали, так как не оставалось времени — я решил отложить это на следующий раз. После первой игры Дима сказал, что хочет поставить свою фишку на 6 (цифра, выигравшая в предыдущей игре), однако поставил маленькую фишку. Выиграл оба раза Женя, первый раз на 6, второй раз на 7.
Петя болеет скарлатиной; из-за этого предыдущая суббота была пропущена. Для того, чтобы, с одной стороны, не получилось месячного перерыва, а, с другой — Петя не слишком много пропустил (да и с двумя заниматься менее весело, чем с тремя), мы решили провести в промежутке одно занятие, чтобы вышло два интервала по две недели. Таким образом, следующее занятие планируется на 17 октября.
Задание 1.
Задание 2.
Рис. 44.
Справляются в целом хорошо, хотя иногда допускают ошибки. Карандаш я им дал с ластиком, и мы им иногда пользуемся. Дима удвоил три фигурки, Женя две.