Читаем Математические головоломки полностью

Если расстояние искомой точки от меньшей группы обозначим через х, то расстояние ее от большей группы выразится через 50 – х (рис. 10). Зная, что сила звука ослабевает пропорционально квадрату расстояния, имеем уравнение


которое после упрощения приводится к виду


x2 + 200x – 5000 = 0.


Решив его, получаем два корня:


x

1 = 22,5,

x2 = –222,5.


Рис. 10


Положительный корень прямо отвечает на вопрос задачи: точка равной слышимости расположена в 22,5 м от группы из двух громкоговорителей и, следовательно, в 27,5 м от группы трех аппаратов.

Но что означает отрицательный корень уравнения? Имеет ли он смысл?

Безусловно. Знак минус означает, что вторая точка равной слышимости лежит в направлении, противоположном тому, которое принято было за положительное при составлении уравнения.

Отложив от местонахождения двух аппаратов в требуемом направлении 222,5 м, найдем точку, куда звуки обеих групп громкоговорителей доносятся с одинаковой силой. От группы из трех аппаратов точка эта отстоит в 222,5 м + 50 м = 272,5 м.

Итак, нами разысканы две точки равной слышимости – из тех, что лежат на прямой, соединяющей источники звука. Других таких точек на этой линии нет, но они имеются вне ее. Можно доказать, что геометрическое место точек, удовлетворяющих требованию нашей задачи, есть окружность, проведенная через обе сейчас найденные точки, как через концы диаметра. Окружность эта ограничивает, как видим, довольно обширный участок (заштрихованный на чертеже), внутри которого слышимость группы двух громкоговорителей пересиливает слышимость группы трех аппаратов, а за пределами этого круга наблюдается обратное явление.

Алгебра лунного перелета

Точно таким же способом, каким мы нашли точки равной слышимости двух систем громкоговорителей, можно найти и точки равного притяжения космической ракеты двумя небесными телами – Землей и Луной. Разыщем эти точки.

По закону Ньютона, сила взаимного притяжения двух тел прямо пропорциональна произведению притягивающихся масс и обратно пропорциональна квадрату расстояния между ними. Если масса Земли М, а расстояние ракеты от нее x, то сила, с какой Земля притягивает каждый грамм массы ракеты, выразится через


где k — сила взаимного притяжения одного грамма одним граммом на расстоянии в 1 см.

Сила, с какой Луна притягивает каждый грамм ракеты в той же точке, равна


где т – масса Луны, а l — ее расстояние от Земли (ракета предполагается находящейся между Землей и Луной, на прямой линии, соединяющей их центры). Задача требует, чтобы


или


Отношение  как известно из астрономии, приближенно равно 81,5; подставив, имеем:


откуда


80,5x2 – 163,0lx + 81,5l2 = 0


Решив уравнение относительно x, получаем:


x1 = 0,9l, x2 = 1,12l.


Как и в задаче о громкоговорителях, мы приходим к заключению, что на линии Земля – Луна существуют две искомые точки – две точки, где ракета должна одинаково притягиваться обоими светилами; одна на 0,9 расстояния между ними, считая от центра Земли, другая – на 1,12 того же расстояния. Так как расстояние l между центрами Земли и Луны» 384 000 км, то одна из искомых точек отстоит от центра Земли на 346 000 км, другая – на 430 000 км.

Но мы знаем (см. предыдущую задачу), что тем же свойством обладают и все точки окружности, проходящей через найденные две точки как через концы диаметра. Если будем вращать эту окружность около линии, соединяющей центры Земли и Луны, то она опишет шаровую поверхность, все точки которой будут удовлетворять требованиям задачи.

Диаметр этого шара, называемого сферой притяжения

(рис. 11) Луны, равен


1,12l – 0,9l = 0,22l ≈ 84 000 км.


Рис. 11


Распространено ошибочное мнение, будто бы для попадания ракетой в Луну достаточно попасть в ее сферу притяжения. На первый взгляд кажется, что если ракета очутится внутри сферы притяжения (обладая не слишком значительной скоростью), то она неизбежно должна будет упасть на поверхность Луны, так как сила лунного притяжения в этой области «превозмогает» силу притяжения Земли. Если бы это было так, то задача полета к Луне сильно облегчилась бы, так как надо было бы целиться не в саму Луну, поперечник которой виден на небе под углом 1/2° а в шар диаметром 84 000 км, угловой размер которого равняется 12°.

Однако нетрудно показать ошибочность подобных рассуждений.

Допустим, что запущенная с Земли ракета, непрерывно теряющая свою скорость из-за земного притяжения, оказалась внутри сферы притяжения Луны, имея нулевую скорость. Упадет ли она теперь на Луну? Ни в коем случае!

Во-первых, и внутри сферы притяжения Луны продолжает действовать земное притяжение. Поэтому в стороне от линии Земля – Луна сила притяжения Луны не будет просто «превозмогать» силу притяжения Земли, а сложится с ней по правилу параллелограмма сил и даст равнодействующую, направленную отнюдь не прямо к Луне (только на линии Земля – Луна эта равнодействующая была бы направлена прямо к центру Луны).

Перейти на страницу:

Все книги серии Простая наука для детей

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии