Читаем Математика для гуманитариев: живые лекции полностью

Математики любят символы. Но зачем они? Затем, что иначе придется очень много писать. Символы и язык математики нужны, чтобы сокращать запись. Почему древние греки и римляне не до­шли до современных высот математики? Потому, что они тратили очень много времени на лингвистическую работу перевода мате­матики в слова (и обратно: слов в математику). А вот когда ма­тематика перешла на символы, начался прорыв, о котором я еще расскажу.

Вернемся к нашим змейкам (формула (2))3. Первая из них со­ответствует измененной позиции, а вторая — исходной:

(1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12, 14, 15, 13)

(1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12, 15, 14, 13)

Для каждой пары чисел в каждой строке (а пар всего 105) мы спрашиваем, в правильном ли порядке написаны числа.

Слушатель: Частично да, частично нет.

А.С.: Верно. Например, 1 и 2 — в правильном порядке.

Слушатель:

И последующая пара (2, 3) — тоже.

А.С.: Да, и следующая, и следующая за ней. То есть (4,8).

Слушатель: В смысле «в правильном порядке»?

А.С.: «В правильном» не значит, что числа в паре соседние: и в (2,3), и в (2,7) — числа в паре расположены в правильном порядке.

Слушатель: По возрастанию.

А.С.: Да, по возрастанию. Большее следует за меньшим. Но, например, пара (15,13) «нарушает порядок», потому что вначале идет большее число, потом меньшее.

Посчитаем количество пар, которые стоят в неправильном по­рядке. То есть по убыванию.

Слушатель: Простите, но ведь мы сами выбрали такую запись в виде извивающейся змеи. Мы разве не могли записать как-то иначе?

А.С.:

Могли. Могли записать иначе, но тогда мы бы не преуспе­ли в доказательстве того факта, который нам нужен.

Математика дает полную свободу исследователю. Когда он провел рассуждение и сказал: «Теперь всё доказано», — он оправ­дывает всё, что построил. Математик скажет: «Рассмотрим то-то и то-то». Зачем? Ужас, зачем, это рассматривать? А по­том раз — и всё получилось (невзирая на «ужас»), Мат ем am и- ка — самый свободный род занятий. Никакой моды, нет, ничего.

Если вы, доказали недоказанную гипотезу, то чем бы вы ни пользо­вались, всё прощается. Победителей не судят (но иногда их слегка журят за сложноватое доказательство).

Итак, зачем я считаю пары, и почему так выписал змейку, пока не будет, понятно. Мы, договорились о некотором правиле. Мы, именно так выписываем числа. Вам придется принять это как есть. А дальше я считаю количество пар, которые стоят в неправильном порядке. Раз, два, три, четыре, пять, шесть... (см,, рис. 14).

Условно разобьем наш ряд из 15 чисел на 4 группы в соответ­ствии с номером строки. Рассмотрим для начала пару, элементы которой принадлежат разным группам. Ясно, что такая пара обя­зательно будет «правильной», так как любой элемент из группы слева меньше любого элемента из группы, стоящей правее: у нас группы от 1 до 4. от 5 до 8. от 9 до 12 и от 13 до 15. Значит, «непра­вильные» пары следует искать внутри групп. В первой и третьей группе всё хорошо, поэтому считать надо только оставшиеся две группы. Во второй группе 6 неправильных пар (8.7; 8.6; 8.5; 7.6; 7. 5; 6. 5). В четвертой группе чисел (для змейки, соответствующей измененной позиции) неправильных пар 2. Итого 8. А сколь­ко неправильных пар в исходной позиции? (См. нижнюю строку на рис. 15 или в формуле (2) выше.)

Слушатель: 9.

А.С.: Да. 9. Мы находимся на подступах к пониманию. Сейчас я покажу, что никакие изменения пустого места не меняют чет­ности, количества неправильных пар. Само количество, конечно.

меняется. У нас оно пока равно 8. однако, если перемешать все фишки, согласно правилам игры «15». то количество неправиль­но стоящих нар изменится. Но удивительный факт состоит в том. что вы никогда не измените четности, этого количества. Само ко­личество будет прыгать в сторону увеличения или уменьшения, но только на 2. на 4. на 6. словом, на ЧЕТНОЕ число единиц.

Начнем доказывать это утверждение. Где-то есть пустое место в коробке 4x4 (пусть конфигурация чисел, окружающих его. та­кая. как на рис. 16).

Пустое место может сдвинуться в 4 направлениях (рис. 17).

Давайте рассмотрим все 4 варианта и посмотрим, что произой­дет со змейкой.

Что происходит с выписанной змейкой чисел, если я передвигаю клетку с числом 11 налево?

Слушатели: Ничего.

А.С.: Правда. А что происходит со змейкой, если я передвигаю клеточку с числом 9 направо?

Слушатели: Ничего.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука