Читаем Математика для гуманитариев: живые лекции полностью

А.С.: Ни при каких условиях. Мы уже знаем, что движение по горизонтали — бессмысленно. Получится та же самая змей­ка. Если мы движемся сверху вниз, то количество неправильных пар меняется либо на 2, либо на 4, либо на 6, либо ничего не ме­няется. Можно честно перебрать все возможные переходы снизу вверх. Можно просто понять, что никаких других вариантов, кро­ме четных, нет. То есть в пятнашку выиграть нельзя, потому что в стандартной исходной позиции количество неправильных пар 8, и изменить его можно только на четное число. А в требуемой по­зиции имеется 9 неправильных пар.

Слушатель: Из любой ли позиции выиграть невозможно?

А.С.:

Почему? На самом деле из половины всех исходных пози­ций. Из половины невозможно, из половины возможно. Потому что в «высокой» математике учат, что половина последовательностей имеет четное число неправильных пар, а половина — нечетное4. Поэтому половина вариантов будет собираться в стандартную ис­ходную позицию. Если пятнашки как угодно перемешать, вывалив из коробки и затем вставив обратно как придется, то перестанов­кой фишек всегда можно прийти либо к случаю «13, 14, 15», либо к случаю «13, 15, 14».

Чтобы понять, можно ли привести фишки в исходную позицию, нужно посчитать количество неправильных пар в змейке, соответ­ствующей изучаемой исходной позиции. Если оно нечетное — при­вести к исходной позиции можно. Если четное — то нельзя.

Слушатель: Какие числа можно поменять местами?

Другой слушатель:

Например, 1 и 3 можно поменять?

А.С.: Если я меняю 1 и 3 местами (было 1, 2, 3, — стало 3, 2, 1), то как изменилась четность? Было отсутствие беспорядков (то есть 0), стало три беспорядка. Четность, стало быть, изменилась. Так что поменять в игре «пятнадцать» 1 и 3 местами, сохраняя остальные фишки на своих местах, тоже невозможно. Ваши вопро­сы относятся к теории групп, основе современной алгебры. Что и как можно поменять, чтобы четность менялась — этот вопрос напрямую к теории групп5. Почему ровно половина позиций име­ет четное количество беспорядков? Это тоже связано с некоторым фактом из теории групп. Сейчас я продолжу развивать эту тему. Рассмотрим «кубик Рубика». Венгерский инженер Рубик достойно продолжил дело, начатое Сэмом Лойдом.

Давайте разберем этот кубик и соберем его обратно.

Слушатель: По-моему, есть даже какие-то соревнования на этот счет.

А.С.: На соревнованиях надо собрать тот, который теоретиче­ски возможно собрать. Под словом «разобрать» я понимаю более радикальную операцию: «разодрать».

Как только мне купили кубик Рубика, я сразу его разодрал. Потому что мне было интересно, любую ли позицию можно при­вести к исходной. Мне было это настолько долго интересно, что на мехмате МГУ я решил соответствующую задачку в качестве зачета. Возможно (если мне не изменяет память) 12 разных рас­положений, не переводящихся друг в друга. В пятнашках — 2, а для кубика Рубика — 12 ситуаций. Это тоже следует из теории групп (по которой я и сдавал зачет).

Если перевернуть угловой кубик в кубике Рубика путем прину­дительного «раздирания» и восстановления его формы — его не­льзя будет собрать. Если перевернуть центральный кубичек в ре­бре — тоже нельзя. Если поменять местами два кубика малой «диагонали» любой грани — опять не получится. Эти изменения и все их сочетания задают набор различных позиций кубика Ру­бика, которые нельзя собрать. Однако это — трудная задача.

А теперь поговорим про мяч (рис. 3). То есть, как ни странно, снова про математику.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука