Читаем Математика. Поиск истины. полностью

В 1905 г. на сцене физики появилась новая фигура — Альберт Эйнштейн (1879-1955). Эйнштейн явно питал большую склонность к физике, чем к математике. Хотя он в достаточной мере владел математикой и с годами существенно усовершенствовал математический аппарат своей теории, для него математика всегда оставалась не более чем полезным инструментом. Физике Эйнштейн придавал несравненно более важное значение. На него большое впечатление произвели работы по теории электромагнетизма и, в частности, исследования Генриха Герца. Хотя поистине революционные работы Эйнштейна по теории относительности и, как мы увидим в следующей главе, по квантовой механике, были выполнены уже в XX в., Эйнштейна можно считать последним из великих мыслителей XIX в., видевших в математике не более чем некое средство физического мышления. Истина для Эйнштейна лежала за пределами математики. Тем не менее развитая им теория относительности всецело покоилась на математике.

Ознакомившись с работой Лоренца и экспериментом Майкельсона — Морли (хотя до сих пор далеко не ясно, в какой степени эти работы были ему известны), Эйнштейн предпринял попытку устранить столь явное расхождение между классической механикой и теорией Максвелла, а заодно решить некоторые другие из упоминавшихся нами проблем (см. гл. VIII). Одна из работ, выполненных Эйнштейном в 1905 г., называлась «К электродинамике движущихся тел». В ней излагалась специальная (или частная) теория относительности. По существу в своем ограниченном варианте специальная теория относительности родилась в недрах теории электромагнитного поля Максвелла.

Эйнштейн, как говорится, взял быка за рога, сформулировав несколько важных постулатов. Поскольку не существовало иного способа определить абсолютное пространство и время, кроме как с помощью инерциальных систем отсчета, он предположил, что и в механике для преобразования из одной инерциальной системы в другую следует пользоваться соотношениями не Галилея, а Лоренца. Такое решение не было произвольным или надуманным. Лоренц пытался обеспечить инвариантность уравнений Максвелла относительно преобразований системы координат. Эйнштейн полагал, что ему удастся распространить действие законов Ньютона хотя бы на инерциальные системы отсчета. Сильное впечатление на Эйнштейна произвел экспериментально установленный факт постоянства скорости света для всех наблюдателей (независимо от движения источника света), и этот факт Эйнштейн принял в качестве одного из постулатов специальной теории относительности. И поскольку электромагнитное поле создает силу, действующую на электроны, а сила — понятие механическое, у Эйнштейна были определенные основания полагать, что преобразования Лоренца применимы и к механике. Понятие эфира Эйнштейн решительно отверг. Вопрос о том, каким же образом распространяется свет, по-прежнему остался открытым. По словам Гете, величайшее искусство как в теории, так и в практической жизни состоит в том, чтобы превратить проблему в постулат. Именно это и сделал Эйнштейн в 1905 г.

Рассмотрим теперь некоторые следствия из постулатов, принятых Эйнштейном в специальной теории относительности. Первое следствие формулируется так: два наблюдателя, один из которых движется равномерно (со скоростью v) и прямолинейно относительно другого, разойдутся во мнении относительно одновременности событий. Рассмотрим пример из нашей обыденной «земной» жизни.

Предположим, что пассажир, находящийся в середине длинного быстро мчащегося поезда, видит одновременно две вспышки света: одну из головного, а другую из хвостового вагона. Наблюдатель, стоящий на насыпи рядом с железнодорожным полотном посредине между головным и хвостовым вагонами, также увидит две вспышки, но не одновременно.

Вспышка, созданная источником света в хвостовом вагоне, достигнет этого наблюдателя раньше. Возникает вопрос: одновременно ли произошли эти вспышки?

Оба наблюдателя согласятся, что вспышки произошли не одновременно. Наблюдатель на земле объяснит это так: поскольку он находился на равном расстоянии между двумя источниками света, оба световых сигнала (вспышки) должны были пройти, одинаковые расстояния, но так как наблюдатель на насыпи увидел сначала вспышку от источника света в хвостовом вагоне, она была испущена раньше. Наблюдатель-пассажир стал бы рассуждать со своей точки зрения. Скорость, с которой распространялся к нему свет от источника в хвостовом вагоне, равна скорости света минус скорость поезда. А скорость света от источника в головном вагоне относительно наблюдателя-пассажира равна скорости света плюс скорость поезда. Оба световых сигнала (вспышки) должны пройти половину длины поезда, чтобы пассажир мог увидеть их. И поскольку сигнал от источника света в хвостовом вагоне (распространяясь с меньшей скоростью) идет дольше, он должен быть испущен раньше, если пассажир увидел обе вспышки одновременно. Казалось бы, все ясно.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука