Читаем Математика. Поиск истины. полностью

Никаких разногласий между нашими наблюдателями по поводу того, какая из вспышек света произошла раньше, не возникает, так как они оба полагают, что наблюдатель на земле покоится, а наблюдатель в поезде движется относительно эфира. Но пусть теперь наблюдатель в поезде посмотрит на происходящее иначе, предположив, что поезд покоится относительно эфира, а Земля движется в направлении от головы к хвосту поезда. Исходя из этого, пассажир вполне резонно заключит, что, поскольку обе вспышки он видит одновременно, они испущены одновременно. Наблюдатель на земле, несомненно, предпочтет остаться при своей прежней точке зрения, утверждая, что он сам и Земля покоятся относительно эфира и вспышка света в заднем вагоне произошла первой. Как видим, на этот раз мнения наблюдателей относительно того, какая вспышка была первой, расходятся, ибо они по-разному судят о том, кто же из них покоится относительно эфира. Так кто же?

К сожалению, у наблюдателя-пассажира ровно столько же оснований считать, что поезд покоится относительно эфира, сколько у наблюдателя на земле полагать, что относительно эфира покоится наша планета, ибо, как показал эксперимент Майкельсона — Морли, невозможно обнаружить никаких признаков движения через эфир. Следовательно, два наблюдателя, движущиеся относительно друг друга равномерно и прямолинейно, непременно должны расходиться во мнениях по поводу одновременности двух событий.

Но коль скоро оба наблюдателя не согласны в оценке одновременности двух событий, они должны также получить различные результаты при измерении расстояний. Предположим, два наблюдателя — один на Марсе, другой на Земле — договариваются измерить расстояние от Земли до Солнца. Так как это расстояние изменяется в зависимости от времени, наблюдатели должны измерять его в какой-то заранее выбранный момент времени. Но чтобы оба наблюдателя могли прийти к соглашению о выборе момента времени, им необходимо договориться о том, как понимать одновременность событий, например боя часов, отмечающих выбранный момент времени. А поскольку два наблюдателя движутся относительно друг друга равномерно и прямолинейно, они не в состоянии прийти к единому мнению относительно одновременности событий и, следовательно, измеренные ими «в данный момент времени» расстояния Земля — Солнце окажутся различными.

Даже характер траектории, описываемой телом, зависит от наблюдателя. Рассмотрим такой простой пример. Пассажиру поезда, движущегося равномерно и прямолинейно, будет казаться, что камень, выпущенный из рук, падает по прямой, а с точки зрения наблюдателя на земле тот же камень описывает параболическую траекторию. Иначе говоря, вид траектории изменяется в зависимости от положения наблюдателя.

Два наблюдателя, движущиеся друг относительно друга равномерно и прямолинейно, разойдутся во мнениях не только при измерениях расстояний, но и при измерениях продолжительности промежутков времени. В противном случае наблюдатели должны были бы прийти к согласию относительно событий, отмечающих начало и конец временного интервала.

Но выводы, которые извлек из своих постулатов Эйнштейн, далеко не исчерпываются этим. Если один наблюдатель неподвижен, а другой движется относительно него с постоянной скоростью v в заданном направлении (как, например, наблюдатель в поезде), то длина отрезка в движущейся вместе со вторым наблюдателем системе отсчета по измерениям неподвижного наблюдателя окажется короче, чем по измерениям движущегося наблюдателя, и наоборот. Что касается времени, то неподвижному наблюдателю кажется, что наблюдатель, движущийся, например, относительно Земли, перемещается медленнее. Сигара движущегося наблюдателя кажется неподвижному наблюдателю короче, чем его собственная. Иначе говоря, часы в системе отсчета S' покоятся в этой системе. При наблюдении из другой системы отсчета

S часы в системе отсчета S' замедляют свой ход на (1 − 1/β)
за секунду, где β = √(1 − v2/c2). Верно и обратное. В общем случае соотношение между двумя системами отсчета задается преобразованием Лоренца. Кроме того, невозможно отделить измерение пространства от измерения времени (если не считать наблюдателя, производящего измерения в своей собственной системе отсчета), подобно тому как мы не можем отделить одновременно для всех наблюдателей горизонтальное направление от вертикального.

Следует подчеркнуть, что, говоря о различии в результатах измерений длины, производимых различными наблюдателями, мы отнюдь не имеем в виду эффект влияния расстояния на их зрительное восприятие или какие-либо оптические иллюзии. Равным образом, говоря о расхождении в оценках наблюдателями продолжительности временных интервалов, мы никак не связываем это с психологическими или эмоциональными эффектами.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука