Читаем Математика. Поиск истины. полностью

Вытеснение Бога из математического исследования природы происходило постепенно, принимая различные формы — от ортодоксальной религиозности через различные промежуточные стадии до рационалистического супернатурализма: деизма, агностицизма и воинствующего атеизма. Все эти течения оказали свое влияние на математиков XVIII в. Дени Дидро (1713-1784), бесспорно, одному из ведущих мыслителей своего века, принадлежит высказывание, хорошо выражающее умонастроение той эпохи: «Если вы хотите, чтобы я верил в Бога, сделайте так, чтобы я мог дотронуться до него». Ревностный католик Огюстен Луи Коши (1789-1857) заявил во всеуслышание, что «без всяких колебаний отвергнет любую гипотезу, противоречащую истинам божественного откровения». Тем не менее вера в Бога как творца мироздания практически умерла. По словам известного математика Жана Лерона Д'Аламбера, основного соратника Дени Дидро по работе над изданием знаменитой французской «Энциклопедии», «истинная система мира была познана, развита и усовершенствована». Закон природы, очевидно, есть закон математический.

Лагранж и Лаплас, хотя оба и выросли в католических семьях, не были верующими людьми. Лаплас полностью отвергал все метафизические принципы, основанные на вере в Бога. Известна такая история. Когда Лаплас преподнес Наполеону экземпляр своей «Небесной механики», император заметил: «Месье Лаплас, говорят, что вы написали эту большую книгу о системе мира, ни разу не упомянув Создателя». На что Лаплас якобы ответил: «Мне не понадобилась эта гипотеза». Природа заменила Бога. Математики с головой ушли в поиски математических законов природы, не сомневаясь, что именно им выпало на долю открывать те самые основополагающие принципы, которые ранее приписывались Богу.

К концу XVIII в. математика представляла собой как бы величественное двухтысячелетнее дерево, прочно стоящее на почве реальности с могучими корнями и мощными ветвями, возвышавшееся над всеми остальными областями знания. Мог ли кто-нибудь усомниться в том, что такому дереву суждено жить вечно! Убеждение в том, что природа основана на математических принципах, было прочно, как никогда. Задача математиков состояла в том, чтобы открывать эти принципы и познавать законы, управляющие Вселенной, и сама математика считалась инструментом, как нельзя лучше приспособленным для решения этой задачи. Трудясь не покладая рук, настойчиво и прилежно, можно было рассчитывать на открытие все новых истин.

Развитие неевклидовой геометрии (см. гл. VIII) показало, что созданная человеком математика ничего не говорит о природе и имеет мало общего с доказательством существования Бога. Выяснилось также, что именно человек фиксирует порядок в природе, предполагаемую простоту и математическую регулярность. Вполне возможно, что в природе не заложено никаких математических принципов. По-видимому, вернее будет сказать, что математика предлагает нам не более чем некий ограниченный, вполне осуществимый, рациональный план.

В нашем столетии перед математикой были поставлены еще более скромные цели. Эварист Галуа (1811-1832) так отзывался о ней: «Эта наука — всего лишь одно из множества творений человеческого разума, более приспособленного к тому, чтобы изучать и искать истину, чем к тому, чтобы ее находить и познавать» ([28], с. 61). Видимо, истине свойственно быть неуловимой; как сказал римский философ Луций Сенека (ок. 4 г. до н.э. — 65 г. н.э.), «природа не сразу открывает все свои тайны».

Но даже если математика утратила свое место в цитадели истины, в физическом мире она прочно удерживала свои позиции. Нельзя было обойти или недооценить главного: математика была и остается превосходным методом исследования открытия и описания физических явлений. В некоторых областях физики математика, как мы узнали, составляет самую суть нашего понимания физического мира. Даже если математические структуры сами по себе не отражают реальности физического мира, их тем не менее можно считать единственным ключом к познанию реальности. Неевклидова геометрия не только не уменьшила ценности математики в этом отношении и не подорвала доверия к ее результатам, но, напротив, как это ни парадоксально, способствовала расширению ее приложений, ибо математики, почувствовав большую свободу в исследовании радикально новых идей, обнаружили, что некоторые из них вполне применимы во многих областях человеческой деятельности. Роль математики в «упорядочении» окружающего мира и овладении природой начиная с 30-х годов XIX в. возрастала невероятно быстрыми темпами. Кроме того, со времен Ньютона существенно увеличилась также точность, с которой математики могли описывать и предсказывать явления природы.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука