Вытеснение Бога из математического исследования природы происходило постепенно, принимая различные формы — от ортодоксальной религиозности через различные промежуточные стадии до рационалистического супернатурализма: деизма, агностицизма и воинствующего атеизма. Все эти течения оказали свое влияние на математиков XVIII в. Дени Дидро (1713-1784), бесспорно, одному из ведущих мыслителей своего века, принадлежит высказывание, хорошо выражающее умонастроение той эпохи: «Если вы хотите, чтобы я верил в Бога, сделайте так, чтобы я мог дотронуться до него». Ревностный католик Огюстен Луи Коши (1789-1857) заявил во всеуслышание, что «без всяких колебаний отвергнет любую гипотезу, противоречащую истинам божественного откровения». Тем не менее вера в Бога как творца мироздания практически умерла. По словам известного математика Жана Лерона Д'Аламбера, основного соратника Дени Дидро по работе над изданием знаменитой французской «Энциклопедии», «истинная система мира была познана, развита и усовершенствована». Закон природы, очевидно, есть закон математический.
Лагранж и Лаплас, хотя оба и выросли в католических семьях, не были верующими людьми. Лаплас полностью отвергал все метафизические принципы, основанные на вере в Бога. Известна такая история. Когда Лаплас преподнес Наполеону экземпляр своей «Небесной механики», император заметил: «Месье Лаплас, говорят, что вы написали эту большую книгу о системе мира, ни разу не упомянув Создателя». На что Лаплас якобы ответил: «Мне не понадобилась эта гипотеза». Природа заменила Бога. Математики с головой ушли в поиски математических законов природы, не сомневаясь, что именно им выпало на долю открывать те самые основополагающие принципы, которые ранее приписывались Богу.
К концу XVIII в. математика представляла собой как бы величественное двухтысячелетнее дерево, прочно стоящее на почве реальности с могучими корнями и мощными ветвями, возвышавшееся над всеми остальными областями знания. Мог ли кто-нибудь усомниться в том, что такому дереву суждено жить вечно! Убеждение в том, что природа основана на математических принципах, было прочно, как никогда. Задача математиков состояла в том, чтобы открывать эти принципы и познавать законы, управляющие Вселенной, и сама математика считалась инструментом, как нельзя лучше приспособленным для решения этой задачи. Трудясь не покладая рук, настойчиво и прилежно, можно было рассчитывать на открытие все новых истин.
Развитие неевклидовой геометрии (см. гл. VIII) показало, что созданная человеком математика ничего не говорит о природе и имеет мало общего с доказательством существования Бога. Выяснилось также, что именно человек фиксирует порядок в природе, предполагаемую простоту и математическую регулярность. Вполне возможно, что в природе не заложено никаких математических принципов. По-видимому, вернее будет сказать, что математика предлагает нам не более чем некий ограниченный, вполне осуществимый, рациональный план.
В нашем столетии перед математикой были поставлены еще более скромные цели. Эварист Галуа (1811-1832) так отзывался о ней: «Эта наука — всего лишь одно из множества творений человеческого разума, более приспособленного к тому, чтобы изучать и искать истину, чем к тому, чтобы ее находить и познавать» ([28], с. 61). Видимо, истине свойственно быть неуловимой; как сказал римский философ Луций Сенека (ок. 4 г. до н.э. — 65 г. н.э.), «природа не сразу открывает все свои тайны».
Но даже если математика утратила свое место в цитадели истины, в физическом мире она прочно удерживала свои позиции. Нельзя было обойти или недооценить главного: математика была и остается превосходным методом исследования открытия и описания физических явлений. В некоторых областях физики математика, как мы узнали, составляет самую суть нашего понимания физического мира. Даже если математические структуры сами по себе не отражают реальности физического мира, их тем не менее можно считать единственным ключом к познанию реальности. Неевклидова геометрия не только не уменьшила ценности математики в этом отношении и не подорвала доверия к ее результатам, но, напротив, как это ни парадоксально, способствовала расширению ее приложений, ибо математики, почувствовав большую свободу в исследовании радикально новых идей, обнаружили, что некоторые из них вполне применимы во многих областях человеческой деятельности. Роль математики в «упорядочении» окружающего мира и овладении природой начиная с 30-х годов XIX в. возрастала невероятно быстрыми темпами. Кроме того, со времен Ньютона существенно увеличилась также точность, с которой математики могли описывать и предсказывать явления природы.