Читаем Математика. Поиск истины. полностью

Мы сталкиваемся здесь с явно парадоксальной ситуацией. Область знания, не претендующая более на роль носителя истины, подарила нам прекрасно согласующуюся с повседневным опытом евклидову геометрию, необычайно точную гелиоцентрическую теорию Коперника и Кеплера, величественную и всеохватывающую механику Галилея, Ньютона, Лагранжа и Лапласа, физически необъяснимую, но имеющую весьма широкую сферу приложений теорию электромагнетизма Максвелла, теорию относительности Эйнштейна с ее тонкими и необычными выводами и позволила многое понять в строении атома. Все эти блестящие достижения опираются на математические идеи и математические рассуждения. Быть может, в отрасли знания, о которой идет речь, все-таки заключена некая магическая сила, позволившая ей одержать столько побед, хотя сражалась она под непобедимым знаменем истины?

Эта проблема неоднократно привлекала к себе большое внимание, в частности, Альберта Эйнштейна, который не раз касался ее в своих статьях, посвященных общефилософским вопросам естествознания:

В этой связи возникает вопрос, который волновал исследователей всех времен. Почему возможно такое превосходное соответствие математики с реальными предметами, если сама она является произведением только человеческой мысли, не связанной ни с каким опытом? Может ли человеческий разум без всякого опыта, путем одного только размышления понять свойства реальных вещей?

([7], т. 2, с. 83.)

Эйнштейн понимал, что аксиомы математики и принципы логики выведены из опыта, но его интересовало, почему следствия, вытекающие из созданных человеком аксиом и принципов, так хорошо согласуются с опытом.

На вопрос «Почему математика «работает»?» было предложено несколько различных ответов. Некоторые полагают, будто математики «подбирают» аксиомы так, чтобы выводимые из них следствия согласовывались с опытом. Эту идею впервые высказал Дидро в своей работе. «Мысли об интерпретации природы» (1753). Великий мыслитель сравнивал математика с игроком. И тот и другой играют, придерживаясь ими же придуманных абстрактных правил. И тот и другой сосредоточивают свои помыслы на исследовании некоего условного предмета, рожденного принятыми соглашениями и не имеющего основы в реальности. Столь же критическую позицию занимал и Бернар Ле Бовье де Фонтенель (1657-1757). Оспаривая убеждение в незыблемости законов движения небесных тел, он довольно язвительно заметил, что «на памяти» роз ни один садовник никогда не умирал.

Подобным образом действуют и создатели современных математических моделей. Берется одна из возможных моделей и сверяется с опытом. Если модель оказывается неадекватной, то в нее вносят надлежащие изменения. Тем не менее возможность вывести из одной модели сотни теорем, хорошо согласующихся с опытом, т.е. применимых к реальности, так или иначе поднимает вопрос, ответить на который не так-то легко.

Ныне предлагается и совершенно другое объяснение «эффективности» математики. Оно восходит к Канту, который, правда, изложил его в несколько иной форме. Кант утверждал, что мы не знаем и не можем знать природу. Мы ограничены чувственными восприятиями, но наш разум, наделенный предустановленными структурами (по терминологии Канта «интуитивными суждениями») пространства и времени, организует эти чувственные восприятия в соответствии с тем, что диктуют присущие ему врожденные структуры. Например, наши пространственные восприятия мы организуем в соответствии с законами евклидовой геометрии потому, что этого требует наш разум. Будучи организованными таким образом, пространственные восприятия и в дальнейшем подчиняются законам евклидовой геометрии. (Отстаивая евклидову геометрию как единственно возможную геометрию реального мира, Кант, как мы теперь знаем, заблуждался.) Иначе говоря, мы видим только то, что позволяет видеть наша математическая «оптика». По мнению Канта, «всеобщие и необходимые законы опыта принадлежат не самой природе, а только разуму, который вкладывает их в природу».

Физик Арнольд Зоммерфельд (1868-1951), как и многие его коллеги, считал идею предписывания законов природы человеческим разумом вопиющим примером человеческого высокомерия, но Артур Стенли Эддингтон (1882-1944) вполне разделял идею Канта:

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука