Как и «чистые» математики, физики-теоретики на рубеже XX в. были преисполнены гордости за достигнутые успехи, и состояние физических теорий не вызывало у них беспокойства. Разве не они открыли совершенно новый мир — мир электромагнитных явлений, сулящий ускорить и расширить культурный и технический прогресс человечества, существенно усовершенствовать средства связи? Возможно, что такому безмятежному, не омрачаемому критикой состоянию теоретической физики в какой-то мере способствовала гипотеза эфира, который на протяжении двух веков считался средой, где якобы распространяется свет и электромагнитное излучение других видов.
Но безмятежное спокойствие, царившее в физике на рубеже нашего века, было затишьем перед бурей. Когда восторги, вызванные замечательными достижениями, начали утихать, физики-теоретики поняли, что далеко не все фундаментальные проблемы решены. Одно из решений таких проблем — создание теории относительности — ознаменовало подлинный переворот в научной концепции реального физического мира. И хотя этот переворот не оказал столь сильного влияния на нашу повседневную жизнь, как радио и телевидение, ставшие со временем достоянием миллионов, для нашего понимания природы физического мира его последствия были необычайно важны.
Какие проблемы заставляли математиков и физиков в конце XIX в. углубленно размышлять и искать принципиально новые подходы к объяснению фундаментальных явлений окружающего мира? Первая из таких проблем — геометрия физического пространства. Чтобы понять суть этой проблемы, нам придется вернуться к прошлому.
На протяжении двух тысячелетий не один математик высказывал сомнение в физической истинности аксиомы Евклида о параллельных, которая гласит:
И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встречаются с той стороны, где углы меньше двух прямых.
Это означает (рис. 32), что если углы 1 и 2 в сумме меньше 180°, то прямые
Рис. 32.
Евклид имел достаточно веские основания, чтобы сформулировать свою аксиому именно так. Он мог бы утверждать, что если сумма углов 1 и 2 равна 180°, то прямые
Считалось, что аксиома о параллельных в том виде, в каком ее сформулировал Евклид, излишне сложна и ей недостает простоты других аксиом. Самого Евклида придуманный им вариант аксиомы о параллельных также не устраивал: недаром он обращался к этой аксиоме, лишь доказав все теоремы, какие только можно было доказать без нее.
Даже в античную эпоху математики неоднократно пытались решить проблему, связанную с аксиомой о параллельных Евклида. Эти попытки были двух типов. Одни пробовали заменить аксиому о параллельных какой-нибудь другой аксиомой, казавшейся им более очевидной. Другие старались, вывести аксиому Евклида из девяти других аксиом его геометрии. Если бы это удалось, то аксиома о параллельных превратилась бы в одну из теорем и всякие сомнения в ее истинности разом отпали бы. На протяжении двух тысячелетий не один десяток самых выдающихся математиков, не говоря уже о менее известных, пытались и заменить аксиому о параллельных и вывести ее из других аксиом. История аксиомы Евклида о параллельных длительна, изобилует техническими деталями, и мы не будем пересказывать ее здесь подробно, тем более что она не имеет прямого отношения к главной теме нашего повествования и неоднократно излагалась в других работах.{10}
Из аксиом, предлагавшихся взамен аксиомы Евклида о параллельных, нельзя не упомянуть по крайней мере одну. Мы остановили свой выбор на ней потому, что именно с такой редакцией аксиомы о параллельных мы обычно знакомимся в школьном курсе геометрии. Автором этого варианта аксиомы принято считать Джона Плейфера (1748-1819), который предложил его в 1795 г. Аксиома Плейфера гласит:
Существует одна и только одна прямая, проходящая через данную точку