В первой работе по математическому анализу (1669) Ньютон не без гордости ввел бесконечные ряды для упрощения основных операций — дифференцирования и интегрирования. Так, воспользовавшись для интегрирования (антидифференцирования) функции
который и проинтегрировал почленно. Ньютон обратил внимание на то, что если ту же функцию представить в виде
Ньютон заметил далее, что при достаточно малом
Обоснование, данное Ньютоном производимым им операциям над бесконечными рядами, может служить великолепным образцом логики того времени. В статье 1669 г. Ньютон утверждал:
То, что обычный анализ [алгебра] выполняет с помощью уравнений с конечным числом членов (если это выполнимо), [новый анализ] всегда может выполнить с помощью уравнений с бесконечным числом членов [рядов]; поэтому я, не задумываясь, назвал новое исчисление анализом. Рассуждения в нем не менее надежны, чем в обычном анализе, не менее точны и уравнения, хотя мы, смертные, чей разум ограничен узкими пределами, не можем ни выразить, ни постичь все члены этих уравнений дабы найти из них точные значения тех величин, которые нам нужны.
Для Ньютона бесконечные ряды были частью алгебры — высшей алгебры, изучающей выражения не с конечным, а с бесконечным числом членов.
Подобно Ньютону и Лейбницу, над решением странной проблемы бесконечных рядов бились несколько представителей славного математического рода Бернулли, а также Эйлер, Д'Аламбер и другие математики XVIII в. Применяя бесконечные ряды в анализе, они совершали всевозможные ошибки, предлагали неверные доказательства, приходили к неверным заключениям. Более того, иногда они в обоснование своих результатов приводили рассуждения, которые мы, ретроспективно, можем назвать лишь смехотворными и нелепыми. Даже беглого перечисления таких рассуждений достаточно, чтобы понять, какая сумятица и неразбериха царили тогда в представлениях о свойствах бесконечных рядов.
При
1/(1 +
переходит в ряд
1 − 1 + 1 − 1 + 1 − ….
Вопрос о том, чему равна сумма последнего ряда, порождал бесконечные споры. Если этот ряд записать в виде
(1 − 1) + (1 − 1) + (1 − 1) + …,
то становится ясно, что его сумма должна быть равна нулю. Но если тот же ряд записать как
1 − (1 − 1) − (1 − 1) − …,
то столь же ясно, что сумма ряда должна равняться единице. Однако ясно также и то, что если сумму ряда обозначить через
или
откуда
Гвидо Гранди (1671-1742) в своем небольшом сочинении «Квадратура окружностей и гипербол» (
1
/2 = 1 − 1 + 1 − 1 + 1 − ….Тем самым Гранди утверждал, что сумма ряда равна 1
/2. Но одновременно он заявлял, что сумма того же ряда равна 0. По мнению Гранди, полученное им «равенство» 0 = 1/2 доказывало, что мир мог быть создан из ничего.