В XVIII в. господствовал формальный подход к бесконечным рядам. Математики того времени отменили все ограничения на операции над рядами, например перестали заботиться о сходимости ряда. Использование рядов давало полезные результаты — и математики довольствовались практическим подтверждением правильности применяемых ими методов. Они далеко вышли за пределы того, что могли бы обосновать, но в целом обращались с расходящимися рядами довольно осторожно.
Хотя арифметика и алгебра были обоснованы ничуть не лучше математического анализа, математики сосредоточили свои усилия на последнем, надеясь изгнать из дифференциального и интегрального исчисления любую неоднозначность. Столь явное предпочтение математическому анализу объяснялось, несомненно, тем, что к началу XVIII в. различные типы чисел стали привычными и казались вполне естественными, в то время как понятия математического анализа по-прежнему оставались странными и даже загадочными, а потому менее приемлемыми. Кроме того, применение чисел не приводило к противоречиям, тогда как применение дифференциального и интегрального исчисления, бесконечных рядов и других разделов математического анализа рождало противоречия.
Ньютоновский подход к анализу потенциально легче поддавался обоснованию, чем подход Лейбница, хотя методология Лейбница отличалась большей гибкостью и была более удобной для приложений. Английские математики все еще надеялись обосновать оба подхода, связав их с евклидовой геометрией. К тому же они путали ньютоновские моменты (приращения неделимых, нынешние дифференциалы) и его непрерывные переменные. Математики, жившие в континентальной Европе, придерживались подхода Лейбница и пытались обосновать введенное им понятие дифференциала (бесконечно малой). Книги, посвященные объяснению и обоснованию подходов Ньютона и Лейбница, слишком многочисленны и противоречивы, чтобы подробно говорить о них.{78}
Пока одни математики предпринимали усилия, чтобы обосновать математический анализ, другие подвергали сомнению его правильность. Самым сильным нападкам математический анализ подвергся со стороны философа епископа Джорджа Беркли (1685-1753), опасавшегося, что вдохновляемая математикой философия механицизма и детерминизма создает растущую угрозу религии. В 1734 г. Беркли опубликовал сочинение под названием «Аналитик, или Рассуждение, адресованное одному неверующему математику [таковым он называл Эдмонда Галлея], в котором исследуется, являются ли предмет, принципы и заключения современного анализа более отчетливо познаваемыми и с большей очевидностью выводимыми, чем религиозные таинства и положения веры» [21]. «Вынь бревно из глаза своего, и ты узришь соринку в глазу брата своего». Беркли с полным основанием сетовал на загадочность и непонятность того, чем занимаются математики, поскольку те никак не обосновывали и не объясняли своих действий. Беркли подверг критике многие из рассуждений Ньютона, и в частности указал на то, что в «Рассуждении о квадратуре кривых» Ньютон (обозначавший приращение через
А если непостижимы первые [флюксии], то что можно сказать о вторых, третьих [производных от производных] и т.д.? Тот, кто сумеет постичь начало начал или конец концов… возможно, окажется достаточно проницательным, чтобы понять подобные вещи. Но, по моему глубокому убеждению, большинство людей не в состоянии понять их в каком бы то ни было смысле… Тому, кто сумеет превратить вторую и третью производную, думается, вряд ли стоит особо привередничать по поводу того или иного пункта в Священном писании.