Предвестников этого явления мы видим в таких элементарных вещах, как термостаты (продукция Google под названием Nest) и разнообразные подсчитывающие шаги и пульс фитнес-трекеры, не говоря уж о невероятных, постоянно связанных с человеком личных помощниках, активируемых голосовыми командами (Google Home и Amazon Echo). К 2050 году они будут распространены так же широко, как наручные часы или радиоприемники более полувека назад.
Применение собранных данных в нашей ежедневной деятельности, по сути, другой способ сказать, что мы применяем на практике наши эмпирические знания об устройстве мира. Общество давно поступает именно так, но когда их объем был ограничен, это выглядело как определенные, весьма заметные стереотипы поведения. Теперь, когда нам доступно куда больше информации, стереотипы стали гораздо тоньше. Если в течение последующих 35 лет эффективность человеческого труда будет расти так же, как она росла в последние 35 лет благодаря компьютерам, можно пытаться спрогнозировать, как будет выглядеть жизнь в 2050 году.
Она разобьется на три основных направления. Во-первых, то, что сегодня сложно, станет легче. Во-вторых, подешевеет то, что сегодня дорого. В-третьих, проблема дефицита перестанет быть столь острой. Короче: проще, дешевле, больше. Давайте возьмем три эти направления и наложим их на некоторые самые важные и крупные сферы жизни общества: здравоохранение, образование и право.
Врач, исцелись сам
Сегодня медицинская практика имеет больше общего с XIX веком, чем с XXI. Доктора опираются на прочитанное в медицинских учебниках и на многолетний опыт принятия решений. Звучит вполне разумно. Но на самом деле это нелепо: никто из практикующих врачей не может быть знаком со всеми возможными заболеваниями и методами лечения, особенно с учетом постоянного появления новых лекарств.
Если Google среди миллиардов страниц может найти нужные и упорядочить их по релевантности, а Amazon — удивительно точно порекомендовать вам следующую покупку, не должны ли доктора при составлении каждого диагноза полагаться на компьютер? К 2050 году это, вероятно, окажется самым привычным делом. Медицинские карты станут электронными, и алгоритмы будут перебирать их в поисках действенных методов лечения, побочных эффектов и их возможной взаимосвязи.
База данных станет самым умным врачом в мире: она помнит каждый случай и видит связь между назначенными лечебными средствами и результатами, благодаря чему может порекомендовать, что лучше всего сработает в данной ситуации. Но окончательное решение все еще будет за врачом. В то же время они будут подвергаться риску судебного преследования по обвинению в ненадлежащем исполнении врачебных обязанностей, если они попытаются поставить диагноз без консультации с системой больших данных, так же, как сегодня летчики потеряют свою работу, если выключат автопилот, наденут кожаный шлем и очки и попытаются посадить самолет "как в старые добрые времена".
Для помощи врачам в диагностике заболеваний, Watson — суперкомпьютер фирмы IBM, способный находить в своей обширной базе данных ответы на вопросы, заданные на естественном языке, — уже несет в себе большой объем медицинской информации. Решения из области больших данных используются для разработки новых лекарств. А роботизированные хирургические системы "обучены" накоплению информации о прошлых операциях, так же как беспилотный автомобиль опирается на опыт предыдущих дорожных ситуаций.
Одной из областей, где большие данные смогут произвести локальный переворот в здравоохранении, является цифровая патология. В 2011 году команда исследователей во главе с Эндрю Беком из Гарвардского университета использовала компьютерное распознавание образов и алгоритм машинного обучения для анализа биопсии клеток рака молочной железы. Эта информация сопоставлялась с уровнем выживаемости пациентов, чтобы понять, сможет ли система строить прогнозы для раковых пациентов так же хорошо, как живые люди. Что удивительно, ей это удалось. Более того, среди 11 признаков, использованных алгоритмом для предсказания наличия рака в биопсии клеток, только восемь ссылались на сами клетки. Три остальные были связаны с окружающими стромальными клетками, врачи даже не знали, что именно следует искать. Эта информация была скрыта от человеческих глаз, но анализ огромных массивов данных помог докопаться до истины.
Цифровая патология все еще находится на стадии лабораторных исследований, и для введения ее в повседневный обиход необходимо пересмотреть нормативно-правовые акты. Тем не менее к 2050 году именно так и будет проводиться медицинская диагностика. Данные революционизируют оказание медицинской помощи. Собственно, все, требующее узкоспециализированной подготовки, суждений и принятия решений в условиях неопределенности, будет осуществляться лучше, если человек станет использовать соответствующие алгоритмы. Это будет точнее, быстрее и дешевле.
Обучение учителей
Александр Александрович Воронин , Александр Григорьевич Воронин , Андрей Юрьевич Низовский , Марьяна Вадимовна Скуратовская , Николай Николаевич Николаев , Сергей Юрьевич Нечаев
Культурология / Альтернативные науки и научные теории / История / Эзотерика, эзотерическая литература / Образование и наука