Читаем Механика от античности до наших дней полностью

Ученые Мертон-колледжа определяли скорость через понятие равного промежутка времени. Существенным моментом здесь является то, что в отличие от Герарда Брюссельского и Брадвардина они ввели в это определение понятие «любой». Так, Суисет приводит следующее определение равномерного движения: «Униформное локальное движение (т. е. движение в пространстве) таково, что в любые равные промежутки времени описываются равные пути».

Хейтесбери дает определение равномерно ускоренного движения как такового, которое, «в любую из равных частей времени приобретает равные приращения скорости».

Мгновенной, или «точечной», скоростью в случае дифформного (неравномерного) движения мертонцы называли скорость, определяемую в любое мгновение по линии, которую прочертила бы наиболее быстро движущаяся точка, если на протяжении времени она стала бы двигаться униформно (равномерно), с тем же градусом скорости, с которым она движется в это мгновение, — какое бы мгновение ни взять.

Ускорение и замедление движения Хейтесбери называл соответственно «интенсивностью» и «ремиссией» «местного движения». Различение ускорения и замедления было связано с тем, что в XIV в. в Европе не располагали понятием отрицательных величин. Общее определение ускорения отсутствовало, но его умели должным образом охарактеризовать в конкретных случаях.

Так, специально рассматривалось униформно-дифформное движение, под которым понималось движение с постоянным ускорением. Согласно Хейтесбери, при униформно ускоренном или замедлендом движении скорость нарастает или уменьшается за равные промежутки времени на равную величину.

Одним из наиболее важных результатов механики была теорема об эквивалентности равномерно ускоренного движения (и вообще изменения) равномерному движению (изменению) со средней скоростью.

Формулировка этой «мертонской теоремы» такова: «Всякое униформно-дифформное изменение, начинающееся с не градуса (нуля), эквивалентно униформному изменению со средним градусом», т. е. в ускоренном движении, начинающемся из состояния покоя, пройденное расстояние s равно vt/2, где v

— скорость в рассматриваемый момент времени.

Различные доказательства этой теоремы содержатся в упомянутых трактатах Хейтесбери, Суисета, Дамблтона и относятся к 1330—1340 гг.

Доказательство Хейтесбери начинается следующим утверждением: «Каждое приращение скорости, униформно приобретаемое или теряемое, отвечает средней скорости. Это предполагает, что движущееся тело униформно приобретает или теряет такие приращения, что за данное время проходит расстояния, в точности равные тем, которые оно прошло бы, двигаясь в то же время со средней скоростью». Это утверждение доказывается с помощью рассмотрения симметричных приращений и «потерь» скорости над ее «средним градусом». В своем доказательстве Хейтесбери исходит из свойства непрерывной пропорции a : b = b : c = (a – b) : (b –c) и применяет его к делению на «пропорциональные части» в отношении 2:1; так как первая «пропорциональная часть» равна сумме всех последующих, то разность между первым и вторым членами равна сумме всех последующих разностей. Поэтому, если взять в униформно-дифформной широте «градусы», убывающие в пропорции 2:1, то разность между высшим и средним (вдвое меньшим) «градусами» будет равна сумме разностей («широт») менаду средним «градусом» и «не градусом», т. е. 1/2 =

1/4 + 1/8 + 1
/16 + … Далее Хейтесбери замечает, что аналогично можно доказать эквивалентность униформно возрастающей «широты» движения среднему «градусу». Таким образом он приходит к следствию, что тело, двигаясь равномерно замедленно со скоростью, убывающей до нуля, проходит в первую половину времени втрое большее расстояние, чем во вторую, т. е. что при униформном убывании «градусов движения» (т. е. скоростей) на первую половину времени приходится расстояние, втрое большее, чем на вторую.

Суисет приводит четыре различных доказательства этой теоремы, которую он формулирует следующим образом: «Всякая широта движения, униформно приобретаемая или теряемая, соответствует своему среднему градусу… так что столько же в точности будет пройдено благодаря этой так приобретаемой широте, сколько и благодаря ее среднему градусу, если бы тело двигалось все время с этим средним градусом».

Наиболее интересное из них — третье доказательство, которое проводится с помощью суммирования двух бесконечных рядов. Суисет исходит из деления интервала времени на «пропорциональные части» t, t/2r t/4, t/8, …, t/2n-1. В любой момент первой «пропорциональной части» времени тело будет двигаться вдвое быстрее, чем в соответствующий момент второй «пропорциональной части», и т. д. Поскольку первая «пропорциональная часть» времени вдвое больше, чем вторая, то тело пройдет за первую часть вчетверо большее расстояние, чем за вторую, за вторую — вчетверо большее, чем за третью, и т. д.

К задаче суммирования ряда Суисет сводит и примеры движений, в которых скорость меняется скачкообразно.

Перейти на страницу:

Все книги серии Из истории мировой культуры

Похожие книги

Адепт Бурдье на Кавказе: Эскизы к биографии в миросистемной перспективе
Адепт Бурдье на Кавказе: Эскизы к биографии в миросистемной перспективе

«Тысячелетие спустя после арабского географа X в. Аль-Масуци, обескураженно назвавшего Кавказ "Горой языков" эксперты самого различного профиля все еще пытаются сосчитать и понять экзотическое разнообразие региона. В отличие от них, Дерлугьян – сам уроженец региона, работающий ныне в Америке, – преодолевает экзотизацию и последовательно вписывает Кавказ в мировой контекст. Аналитически точно используя взятые у Бурдье довольно широкие категории социального капитала и субпролетариата, он показывает, как именно взрывался демографический коктейль местной оппозиционной интеллигенции и необразованной активной молодежи, оставшейся вне системы, как рушилась власть советского Левиафана».

Георгий Дерлугьян

Культурология / История / Политика / Философия