Читаем Менеджмент: конспект лекций полностью

Решение. Введем обозначение: С ( Т ) – длина кратчайшего пути из вершины 1 в вершину Т (поскольку любой путь, который надо рассмотреть, состоит из дуг, а дуг конечное число, и каждая входит не более одного раза, то претендентов на кратчайший путь конечное число, и минимум из конечного числа элементов всегда достигается). Рассматриваемая задача состоит в вычислении С (4) и указании пути, на котором этот минимум достигается.

Для исходных данных, представленных в табл.4, в вершину 3 входит только одна стрелка, как раз из вершины 1, и около этой стрелки стоит ее длина, равная 1, поэтому С (3) = 1. Кроме того, очевидно, что С (1) = 0.

В вершину 4 можно попасть либо из вершины 2, пройдя путь, равный 4, либо из вершины 5, пройдя путь, равный 5. Поэтому справедливо соотношение

С (4) = min {С(2) + 4; С (5) + 5}.

Таким образом, проведена реструктуризация (упрощение) задачи – нахождение С(4) сведено к нахождению С(2) и С (5).

В вершину 5 можно попасть либо из вершины 3, пройдя путь, равный 2, либо из вершины 6, пройдя путь, равный 3. Поэтому справедливо соотношение

С (5) = min { С (3) + 2; С (6) + 3}.

Мы знаем, что С (3) = 1. Поэтому

С (5) = min {3; С (6) + 3}.

Поскольку очевидно, что С (6) – положительное число, то из последнего соотношения вытекает, что С

(5) = 3.

В вершину 2 можно попасть либо из вершины 1, пройдя путь, равный 7, либо из вершины 3, пройдя путь, равный 5, либо из вершины 5, пройдя путь, равный 2. Поэтому справедливо соотношение

С (2) = min {С(1) + 7; С(3) + 5; С (5) + 2}.

Нам известно, что С (1) = 0, С (3) = 1, С (5) = 3. Поэтому

С (2) = min {0 + 7; 1 + 5; 3 + 2} = 5.

Теперь мы можем найти С (4):

С (4) = min { С (2) + 4; С (5) + 5} = min {5 + 4; 3 + 5} = 8.

Таким образом, длина кратчайшего пути равна 8. Из последнего соотношения ясно, что в вершину 4 надо идти через вершину 5. Возвращаясь к вычислению С (5), видим, что в вершину 5 надо идти через вершину 3. А в вершину 3 можно попасть только из вершины 1. Итак, кратчайший путь таков:

1 → 3 → 5 → 4.

Задача о кратчайшем пути для конкретных исходных данных (и табл.4) полностью решена.

Оптимизационные задачи на графах, возникающие при подготовке управленческих решений в производственном менеджменте, весьма многообразны. Рассмотрим в качестве примера еще одну задачу, связанную с перевозками.

Задача о максимальном потоке. Как (т. е. по каким маршрутам) послать максимально возможное количество грузов из начального пункта в конечный пункт, если пропускная способность путей между пунктами ограничена?

Для решения этой задачи каждой дуге ориентированного графа, соответствующего транспортной системе, должно быть сопоставлено число – пропускная способность этой дуги. Исходные данные о транспортной системе, например, внутризаводской, можно также задать таблицей (табл.5).

Решение задачи о максимальном потоке может быть получено из следующих соображений.

Очевидно, максимальная пропускная способность транспортной системы не превышает 6, поскольку не более 6 единиц грузов можно направить из начального пункта 0, а именно, 2 единицы в пункт 1, 3 единицы в пункт 2 и 1 единицу в пункт 3.

Далее надо добиться, чтобы все 6 вышедших из пункта 0 единиц груза достигли конечного пункта 4. Очевидно, 2 единицы груза, пришедшие в пункт 1, можно непосредственно направить в пункт 4. Пришедшие в пункт 2 грузы придется разделить: 2 единицы сразу направить в пункт 4, а 1 единицу – в промежуточный пункт 3 (из—за ограниченной пропускной способности участка между пунктами 2 и 4). В пункт 3 доставлены такие грузы: 1 единица из пункта 0 и 1 единица из пункта 2. Их направляем в пункт 4.

Итак, максимальная пропускная способность рассматриваемой транспортной системы – 6 единиц груза. При этом не используются внутренние участки (ветки) между пунктами 1 и 2, а также между пунктами 1 и 3. Не догружена ветка между пунктами 1 и 4 – по ней направлены 2 единицы груза при пропускной способности в 3 единицы.

Решение можно представить в виде таблицы (табл.6).

Задача линейного программирования при максимизации потока. Дадим формулировку задачи о максимальном потоке в терминах линейного программирования. Пусть Х KM – объем перевозок из пункта К в пункт М. К = 0,1,2,3, М = 1,2,3,4, причем перевозки возможны лишь в пункт с большим номером. Значит, всего имеется 9 переменных Х KM , а именно, Х 01, Х 02, Х 03, Х 12, Х 13, Х 14, Х 23, Х

24, Х 34 . Задача линейного программирования, нацеленная на максимизацию потока, имеет вид:

F → max,

Х 01 + Х 02 + Х 03 = F (0)

– Х 01 + Х 12 + Х 13 + Х 14 = 0 (1)

Х 02 – Х 12 + Х 23 + Х 24 = 0 (2)

Х

03 – Х 13 – Х 23 + Х 34 = 0 (3)

Х 14 – Х 24 – Х 34 = – F (4)

Х 01 ≤ 2

Х 02 ≤ 3

Х 03 ≤ 1

Х 12 ≤ 4

Х 13 ≤ 1

Х 14 ≤ 3

Х 23 ≤ 1

Х 24 ≤ 2

Х 34 ≤ 2

Х КМ ≥ 0, К, М = 0, 1, 2, 3, 4, F ≥ 0.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже